近年来,对话大语模型(LLMS)1经历了快速发展(Touvron等人,2023; Chiang等。,2023; Openai,2023a),在不同应用中显示出强大的对话功能(Bubeck等人,2023; Chang等。,2023)。但是,在对话期间也可以利用LLMS来促进诸如欺诈和网络攻击之类的危害活动,并出现重大的社会风险(Gupta等人。,2023; Mozes等。,2023;刘等。,2023b)。这些风险包括有毒含量的传播(Gehman等人。,2020年),歧视性双期的持续性(Hartvigsen等人,2022),并传播错误信息(Lin等人,2022)。对LLM交通安全性的日益关注 - 特别是确保LLM依据没有有害信息 - 已导致广泛的攻击和国防研究
S. Krobthong A,K。Umma B,T。Rungsawang A,T。Mirian A,S。Wongrerkdee A,*,S。Nilphai c,*,K。Hongsith D,S。S. Choopun D,S。Wongrerkdee E,C.Raktham F,P. p. pimphag g,P。萨恩校园,纳洪病原体73140,泰国b科学系科学与农业技术系,拉贾马加拉科技大学兰纳大学兰纳大学,李·梅斯,泰国C物理学计划,科学技术系,泰国科学和科学系,自由艺术与科学学院,自由艺术和科学材料科学,Roi et Rajabhat University,Roi et roi and roi I Universitiat and roi Intact et 45120科科,朝鲜迈大学,夏安格·梅50200,泰国E工程学院,拉贾曼加拉技术大学,拉纳·塔克(Lanna Tak),塔克(Lanna Tak),塔克(Lanna tak),泰国(TAK 63000),泰国f教育学院,Uttaradit Rajabhat University,Uttaradit Uttaradit Uttaradit 53000,泰国泰国Gibers The thailand thailand thailand thailand thailand ththand thate in thailand ththand phits thit the phits phits thith the金属氧化物半导体的合成由于其在电子,光电子,催化和光伏电场等领域的广泛应用而引起了很大的关注。这项研究介绍了在不同的施加电压下通过两种探针电化学过程在蒸馏水中合成蒸馏水中的铜纳米颗粒(NP)。合成的氧化铜NP表现出从光到深棕色的色谱,表明蒸馏水中氧化铜的形成。利用tyndall效应的初步观察和红色激光证实了溶液的胶体性质。氧化铜增强了这些应用的效率,准确性,耐用性和响应时间。光致发光排放突出了合成氧化铜NP的半导体特性。氧化铜NP在较低的施加电压下表现出很小的量子点(QD),而较高的电压产生的尺寸较大。戒指样图案的出现表明了多晶结构,通过选定的区域电子衍射分析进一步证实了多晶的结构,从而证实了在低压下Cu 2 O的结晶结构,在较高的电压下证实了CUO。因此,这项研究证明了使用两种探针电化学过程合成氧化铜的直接方法,并通过调节施加的电压来产生QD和NP结构。(2024年10月14日收到; 2025年1月8日接受)关键词:氧化铜,电化学过程,纳米颗粒,量子点1.引入具有显着导电性能的金属氧化物半导体(MOS)已被广泛研究用于不同的应用。氧化铜是一种特别有趣的MOS,通常在各种领域中使用,包括传感器,催化剂,导电材料,水纯化系统,能源储能,抗菌剂和光伏电源[1]。但是,传统制备的氧化铜的粒径相对较大,在控制特定特性方面面临着挑战。减少纳米结构材料的大小为
Ahmadi,M.,Arabi,M.,Ascough,J.C.,Fontane,D.G。和Engel,B。 A. (2014)。 朝着改进流域模型的校准:多站点多物镜信息。 环境建模与软件,59,135 - 145。https://doi.org/10.1016/j.envsoft.2014.05.012 Ala-Aho,P.,Soulsby,C.,Wang,H。,H。,&Tetzlaff,D。(2017)。 集成的表面表面模型研究地下水在源头流域径流产生中的作用:一种极简主义的参数化方法。 水文学杂志,547,664 - 677。https://doi.org/ 10.1016/j.jhydrol.2017.02.02.023 Arabi,M.,Govindaraju,R.S.,&Hantush,M.M。(2006)。 使用遗传算法对流域管理实践的具有成本效益的分配。 水资源研究,42,W10429。 https://doi.org/10.1029/ 2006wr004931 Bekele,E。G.和Nicklow,J。W.(2007)。 使用nsga-ii的特警自动量化。 水文学杂志,341,165 - 176。 Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。 (2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。 水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L. 最佳管理实践在提高牧场主导的流域中水质方面的有效性。 (2015)。 改善地球系统模型中水文过程的代表。 水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096Ahmadi,M.,Arabi,M.,Ascough,J.C.,Fontane,D.G。和Engel,B。A.(2014)。朝着改进流域模型的校准:多站点多物镜信息。环境建模与软件,59,135 - 145。https://doi.org/10.1016/j.envsoft.2014.05.012 Ala-Aho,P.,Soulsby,C.,Wang,H。,H。,&Tetzlaff,D。(2017)。集成的表面表面模型研究地下水在源头流域径流产生中的作用:一种极简主义的参数化方法。水文学杂志,547,664 - 677。https://doi.org/ 10.1016/j.jhydrol.2017.02.02.023 Arabi,M.,Govindaraju,R.S.,&Hantush,M.M。(2006)。使用遗传算法对流域管理实践的具有成本效益的分配。水资源研究,42,W10429。https://doi.org/10.1029/ 2006wr004931 Bekele,E。G.和Nicklow,J。W.(2007)。 使用nsga-ii的特警自动量化。 水文学杂志,341,165 - 176。 Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。 (2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。 水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L. 最佳管理实践在提高牧场主导的流域中水质方面的有效性。 (2015)。 改善地球系统模型中水文过程的代表。 水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096https://doi.org/10.1029/ 2006wr004931 Bekele,E。G.和Nicklow,J。W.(2007)。使用nsga-ii的特警自动量化。水文学杂志,341,165 - 176。Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。 (2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。 水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L. 最佳管理实践在提高牧场主导的流域中水质方面的有效性。 (2015)。 改善地球系统模型中水文过程的代表。 水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096Bieger,K.,Hormann,G。,&Fohrer,N。(2015)。(2015):中国山流域中特警表面径流和沉积物产量的详细空间分析。水文科学杂志,60(5),784 - 800。https://doi.org/10.10.1080/02626667.2014.965172 Chaubey,I.,Chiang,L.最佳管理实践在提高牧场主导的流域中水质方面的有效性。(2015)。改善地球系统模型中水文过程的代表。水资源研究,51,5929 - 5956。https://doi.org/10.1002/2015WR017096土壤和水保护杂志,65,424 - 437。https://doi.org/10.2489/jswc.65.65.6.424 Clark,M.P.,Fan,Y.,Y.,Lawrence,D.M.,D.M.,D.M.麦克斯韦(R. M.
该小组的高影响力研究这是一项通过创建一个研究和研究平台来实现可持续发展目标的研究和研究平台,具有很大影响的研究。利用经济的研究(BCG模型经济发展),社会,环境以及艺术与文化为了实现高影响力研究(高影响力研究),可以发表在Scopus数据库或Web科学上,例如Q1/Q2,Q1/KEY SDGS,专利,原型,技术,技术和新开发过程。与内部和外部机构的合作创建一个国家网络合作伙伴和/或国际,以致力于卓越和朋友的工具。成为一个人技术与创新在影响经济,社会和环境方面包括延期,根据13 Chiang Mai University在Biopolis,Medicopolis和Creative Lanna方面以及具有潜力,样本和研究框架的其他影响,如下所示:根据BCG模型开发经济体系
1 piauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piauipiauı´,oeiras,piauı´,巴西,巴西2号,植物科学系2号,皮亚乌大学植物科学系约旦,约旦第5植物学和微生物学系,科学学院,国王沙特大学,利雅得,沙特阿拉伯,阿拉伯六号农艺学系6,巴西Roraima联邦联邦大学,BOA VISTA,BOA VISTA,RORAIMA,RORAIMA,RORAIMA,RORAIMA,7号亚马逊纳斯,巴西,9个真菌研究卓越中心,梅·法·卢国大学,泰国北,10综合分子植物生理学研究,生物学系,安特卫普大学,安特卫普大学,比利时,比利时,11号,农业规划系,Piauı’,Piauı’,Piauı’,Piaui,Piaui,Piaui,Piaui,Piaui
形成物理/虚拟对象的现实(Anders,2007)。数字-物理转换、本地人类数据和空间中用户的 API 数据将产生混合现实网络架构(Anders,2007)。无处不在的移动技术(Hansen,2015)、具体化的交互技术和属性(Rahaman 和 Tan,2009;Schnabel 等人,2007)和图形表示(Achten,1997)将产生实时、响应式的体验。表示输入概述了实时流数据到 3D 形式的转换。个性化寻路系统通过智能手机应用程序和建筑投影产生与人类相关的空间模拟,提供实时、个性化的寻路系统,将用户与数据和彼此连接起来。CAAD 社区中的其他项目已经探索了使用人机交互来通知混合现实空间(Anders,2007 年;Chiu 和 Chiang,2006 年;Kuo 等人,2004 年)。
大型语言模型(LLMS)最近在各种任务中表现出了高功能,尤其是在开放式文本生成中,如Chatgpt(OpenAI,2023a)和其他模型所示(OpenAI,2023b; Touvron等>,2023a,b;江等。,2023)。在开放式一代中,LLMS必须以类似人类的风格产生正确的答案。多亏了缩放法(Kaplan等人。,2020年; Wei等人。,2022; Gunasekar等。,2023),这项和许多其他任务得到了显着改进。评估LLMS的开放式一代对于他们的发展而言是挑战的。最可靠的评估方法是人类的判断,例如在聊天机器人领域(Chiang等人,2024)。但是,开放式一代任务缺乏基本真理和清晰的评估客观标准。最近的llm-as-a-a-a-a判断基准(Zheng等人,2023),高端LLM取代了Human法官,部分解决了此问题,但有
等。,2023)。这些模型包括公开可用-042 Able LLM(Touvron等人,2023; Chiang等。,043 2023; Taori等。,2023)带有视觉编码器和044其他可学习参数(Hu等人,2022; 045 Liu等。,2023b; Li等。,2023a)。将LLMS 046适应视频方式,从而提高了他们的能力047解释视觉内容,它们都使用多模式049指令数据进行了Su-048 perved-048 perved-048(SFT)阶段(Luo等人(Luo等)(Luo等),2023; Muham-050 Mad Maaz和Khan,2023年; Li等。,2023b)。051然而,视频052和文本之间的多模式对齐面临着不足053的重大挑战053的体积和多模式指令质量 - 与仅文本数据相比,多模式指令-054调音数据;仅文本的055数据通常很丰富且多样化,而mul-056 timodal数据通常受到数量和057全面性的限制(Wei等人。,2021;刘等。,058
由于中美贸易紧张,外国公司一直在将制造设施迁出中国,以便在其他国家建立生产中心。这种商业策略被称为“中国+1”或“C+1”战略,即公司避免只在中国投资,而是将业务多元化到其他目的地,以保护其供应链和出口市场免受中美贸易紧张局势的潜在影响。到目前为止,东南亚一直是首选的 C+1 目的地,马来西亚从中受益匪浅,尤其是在半导体和芯片制造业(Chiang,2024 年)。槟城作为物流和航运枢纽的战略地理位置、低劳动力成本、熟练劳动力(尤其是在芯片封装、组装和测试方面)、商业相关基础设施的质量、强大的制造商生态系统以及良好治理的声誉使该州成为一个有吸引力的投资目的地。C+1 战略促进了马来西亚尤其是槟城的芯片投资增加(Goh & Tang,2024 年)。由于中美芯片战争,人们一直在努力确保芯片供应
Sanjay Aneja 15, Syed Muhammad Anwar 16, Timothy Bergquist 17, Veronica Chiang 18, Verena Chung 13, Gian Marco Conte 17, Farouk Dako 19, James Eddy 13, Ivan Ezhov 20, Nastaran Khalili 21, Keyvan Farahani 22, Juan Eugenio Iglesias 23, Zhifan Jiang 24, Elaine Johanson 25, Anahita Fathi Kazerooni 21,26,27, Florian Kofler 28, Kiril Krantchev 2,,,, Dominic LaBella 29, Koen Van Leemput 30、α Hongwei Bran Li 23、α Marius George Linguraru 16,31、α Xinyang Liu 24、α Zeke Meier 32、α Bjoern H Menze 33、α Harrison Moy 2、α、β、ϵ Klara Osenberg 2、α、β Marie Piraud 34、α Zachary Reitman 29、α Russell Takeshi Shinohara 35、α Chunhao Wang 29、α Benedikt Wiestler 28、α Walter Wiggins 36、α Umber Shafique 37、α、η Klara Willms 2、β