鹰嘴豆(Cicer Arietinum L.)是一种重要的食物豆类,在约1484万公顷的面积上种植,其保育率约为1508万吨(Faostat,2020年)。它主要是在干旱和半干旱的热带地区生长的,并且由于诸如干旱,盐度和热量等非生物胁迫而产生的大量产量损失。日益增长的环境发展和干旱的复杂性质是限制鹰嘴豆产量的主要因素之一,通常导致60%至70%的年收益率损失(Barmukh,Roorkiwal,Garg,Garg等,2022; Hajjarpoor等人,2018年)。遗传上遗传性种质的遗传改善和发展是减少干旱胁迫作用的最可持续方法(Varshney,Barmukh等,2021)。在这个方向上,有望通过增强的干旱胁迫适应性来提供更好的农作物品种。
鹰嘴豆(Cicer Arietinum L.)是最重要的谷物豆类之一,每年产量为1587万吨(Faostat,2021)。它是一种自授粉的二倍体农作物,基因组大小约为740 mb,并且在世界各地的干旱和半干旱地区都大量生长(Varshney等,2013)。鹰嘴豆的重要性在于其对共生氮固定及其饮食蛋白,维生素和必需矿物质的内在潜力。鹰嘴豆生产对于主要生活在发展中的人们而言,鹰嘴豆生产对于粮食安全和提高饮食的营养质量至关重要。全球鹰嘴豆产量近年来显着上升(Faostat,2021)。但是,满足不断增长的需求要求鹰嘴豆作物的生产率提高。提高农作物的生产率将需要对诸如Fusarium Wilt(FW)和Ascochyta Blight(AB)等毁灭性疾病的可持续管理,这使鹰嘴豆种植极大的风险。fw,由土壤传播真菌,镰刀菌f。 sp。ciceris(foc)是全球鹰嘴豆最普遍的疾病之一。fw导致产量损失从10%到100%不等,具体取决于品种的可见性和合适的气候条件(Sharma等,2012)。由于FW是一种土壤传播疾病,因此难以通过作物旋转策略或化学控制来管理。因此,使用对FW有抵抗力的品种是最具成本效益,有前途和环境可持续的策略来实现这种疾病。在这个方向上,据报道,用于FW耐药性的几个定量性状基因座(QTL)通过分子育种开发了抗FW-抗性品种(Garg等,2018; Sabbavarapu等,2013; Varshney等,2014)。然而,病原体的遗传变异性很高,导致毒力的多样性,并导致可用来源的耐药性分解(Sharma等,2012)。要加快分子育种过程或通过基因编辑方法发展抗性品种,必须深入了解鹰嘴豆中FW耐药性的分子机制。
简单的摘要:土壤盐度在全球范围内增加,是影响土壤生育能力和农业生产力的主要环境问题。在这项研究中,我们表明,由于鹰嘴豆根渗出液的酚类化合物的显着变化,盐度 - 鸡蛋中心共生的早期事件受到盐度的负面影响,这又影响了其微生儿病的感知和反应。此外,事实证明,使用原生豆类到干旱地区的豆科植物的非毛虫结节内生菌是改善豆科植物生长并增强盐度下的中虫 - chickpea sombiosis的有前途的策略。总而言之,这项研究有助于扩展我们对盐度对豆科植物共生的有害影响的了解,并突出了有益的结节细菌作为生物学工具的潜在使用,以维持更健康的豆科植物 - 豆类 - 豆类 - 从而增强盐含量下盐含量的盐含量的生长。
在玉米方面,还发布了两个高产玉米杂交种,即 PJHM-2 和 PJHM-(R)-3。为了实现营养安全,发布了两个改良鹰嘴豆品种,即 Pusa Chickpea 3057 和 Pusa Chickpea 10217,分别提高了产量和抗旱能力,以及第一个基于 CGMS 的木豆杂交种 Pusa Arhar Hybrid-5。还致力于开发耐盐绿豆品种(PMS-8;PMD-9 和 PMD-10)和扁豆品种(PSL-17 和 PSL-19),扩大其在盐碱地区的种植。为提高各种作物的质量而进行的育种,催生了双零品质芥菜品种(Pusa Double Zero Mustard-35 和 Pusa Double Zero Mustard-36),这些品种具有低芥酸和低硫代葡萄糖苷,以及 MAS 衍生的 Kunitz 胰蛋白酶无抑制剂大豆品种 DS9421 和富含铁和锌的珍珠粟杂交品种 Pusa 1801。IARI 培育的生物强化和特种玉米杂交种被发现更适合生物乙醇生产,并将得到推广,以实现汽油中 20% 的生物乙醇混合目标。与北方邦酿酒商协会签署了一份谅解备忘录,以合作并提供能源部门的自给自足。
加拿大农业及农业食品部公共基因编辑系统加速加拿大作物改良和创新(20210575) 首席研究员:Kevin Rozwadowski,加拿大农业及农业食品部 目标: 优化 CRISPR/Cas 基因编辑系统以在加拿大作物中发挥作用 编辑油菜基因以提高种子产量 ADF 资助:468,785 加元 综合创新战略构建基础,减轻豌豆根腐病威胁(20210610) 首席研究员:Syama Chatterton,加拿大农业及农业食品部 目标: 从多样化豌豆种质系核心集合中鉴定抗根腐病的遗传变异 利用基因组学预测和机器学习准确预测豌豆的根腐病抗性 提高评估镰刀菌的能力 开发创新工具,支持生产者在田间种植豌豆和扁豆 确定导致根腐病发展的关键环境和场地特定因素 共同资助方:萨斯喀彻温省豆类种植者协会;西部谷物研究基金会 ADF 资金:353,006 美元 降低鹰嘴豆和干豆中 FODMAP 含量的变化(20210689) 首席研究员:Brendan O'Leary,加拿大农业及农业食品部 目标: 确定适合人类食用的低 FODMAP 含量的加拿大干豆和鹰嘴豆品种和育种系 研究高温和干旱对鹰嘴豆和干豆种子灌浆过程中 FODMAP 积累的影响 量化种子加工成烤鹰嘴豆或罐装豆类后品种间 FODMAP 含量的变化 ADF 资金:90,001 美元
限制脉冲潜在产量的主要限制因素包括除了社会经济因素以外的脉冲生长区域中普遍存在的生物和非生物应力。在生物胁迫中,与根腐病配合物相结合的镰刀菌可能是最广泛的疾病,除了干根腐烂和锁骨腐烂外,还会造成鹰嘴豆的巨大损失。虽然镰刀菌,无菌性摩西和植物疫病会导致鸽子,黄色马赛克,尾虫叶斑,粉状霉菌和叶片皱纹和叶片造成大量损失,并在Vigna作物(Mungbean和Urdbean)中造成了相当大的损害。在鹰嘴豆和鸽子中的革兰氏荚虫(Helicoverpa Armigera)中,岩豆和鸽子中的革兰氏pod虫,木豆中的豆荚在乌尔德比恩和蒙比e造成严重损害各自的作物的豆荚,粉丝,粉丝,jassids和thrips。bruchids是储存的脉冲晶粒中最严重的害虫,在管理中需要最高优先级。杂草也会大大损失脉冲。最近,线虫已成为许多地区成功种植脉冲的潜在威胁。
Singh,A.P.,Pandey,A.,Verma,P.K。 (2023)来自坏死性真菌Ascochyta rabiei的核效应ARPEC25靶向鹰嘴豆转录因子CaβLim1a,并负责调节木质素的生物合成,从而提高了宿主的易感性。 植物细胞卷35,第3期,1134-1159 https://doi.org/10.1093/plcell/koac372 2。 Thakur K,Shree A,Verma PK。 (2023)揭开病原体欺骗性伪装:从模块到Singh,A.P.,Pandey,A.,Verma,P.K。(2023)来自坏死性真菌Ascochyta rabiei的核效应ARPEC25靶向鹰嘴豆转录因子CaβLim1a,并负责调节木质素的生物合成,从而提高了宿主的易感性。植物细胞卷35,第3期,1134-1159 https://doi.org/10.1093/plcell/koac372 2。Thakur K,Shree A,Verma PK。 (2023)揭开病原体欺骗性伪装:从模块到Thakur K,Shree A,Verma PK。(2023)揭开病原体欺骗性伪装:从模块到
Gabriela Ozawa Brilhante Chickpea Society: from plant-based food awareness to adoption through events management 10/01/2025 14:30:00 N/A Kryvoshapka Sofiia The Impact of Remote Work on Employee Burnout 10/01/2025 14:45:00 Link Jakob Kentrup Firm level effects of Covid State Aid in Spain 10/01/2025 14:45:00 Link Nils Langewald Firm level Effects of Covid State Aid in Italy 10/01/2025 14:45:00 Link Ana Carolina Fontes de Figueiredo Redefining Fast Fashion: Unveiling Zara's Transition To Premium 10/01/2025 15:45:00 Link Spela Strucl Rethinking Receipts - Designing a Digital Solution for a Paper-free Future with Eco Slip 10/01/2025 16:00:00链接