背景:1型糖尿病(T1DM)是一种慢性自身免疫性条件,由于氧化应激和代谢失调,可能导致长期并发症。二氧酶-1(PON-1)是一种与高密度脂蛋白(HDL)相关的酶,具有双重活性:芳基酯酶和乳糖酶。这些活动可保护脂质免受氧化损伤。T1DM儿童中PON-1的功能状态可以提供有关氧化应激与酶保护作用之间关系的见解。本研究旨在评估伊拉克T1DM儿童中PON-1的芳基酯酶和乳糖酶活性。方法:招募了67名T1DM的儿童,并与57个年龄匹配的健康对照组进行了比较。测量芳基酶和lactonase的酶促活性以评估PON-1的功能状态。计算二氧化氧酶-1/HDL(PON/HDL)比例以评估脂质保护和抗氧化能力。氧化状态。结果:PON-1活性分析显示,患者组的芳基酶(2.36±1.17)和乳糖酶(21.9±7.31)显着降低,与对照组相比(芳基酶= 4.54±1.84,lactonase = 29.51±9.92)。TOS和OSI明显更高,而患者组的TA则显着降低。Pearson相关性显示HDL-C和芳基酶之间存在正相关(P = 0.002,r = 0.379),HDL-C和LACTONAPE(P = 0.040,r = 0.366)。结论:降低的PON-1活性与T1DM有关,表明增强PON-1或减少氧化应激可能有助于预防糖尿病并发症并改善心血管健康。关键字:抗氧化活性,二氧化烷酶-1,芳基酶,乳糖酶,氧化损伤,I型糖尿病。
自闭症谱系障碍(ASD)是一种基于两个行为标记的普遍神经发育状况:社交交往和互动的损害,行为和利益的受限/重复模式[1]。社交技能的破坏最近归因于社会刺激的奖励价值较低[2]。根据自闭症的社会动机理论,因为大脑的奖励体系仅被社会强化而薄弱地激活,因此,ASD的人更喜欢与物体而不是人类互动[3],注视非社会而不是社会模式[4],而不是获得非社会奖励,而不是社交奖励[5]。另一种可能性是,ASD的社会障碍源于异常的感觉处理[6]。ASD中的感知受到对细节[7]的增强的关注,捕获关系的能力降低[8],痛苦的感觉超负荷[9]以及高变化的高度感觉数据的耐受性弱[10] [11] [11]。人类构成了最复杂,最变化和不可预测的感觉投入的类型,这是对ASD的人经常将其社会障碍归因于人类刺激的感知处理所带来的挑战[12] [13] [13]:ian [a [一个人]是我的想法,无论是我的想法而言是一种状态,都可以使人感到不适。[14])。由于ASD的上述动机和知觉特殊性,经常认为机器人可能会帮助患有ASD的孩子[15] [16]。为了完成这项工作,我们从社交机器人技术[20],感知 - 行动框架[21]和复杂的系统理论[22]中借了工具。机器人的外观很简单,其行为规律和可预测,其动机价值可能会增强,使它们有望成为人类伴侣的化身,能够减少ASD [17] [18] [19]的社会关系障碍。为了评估这些功能的优势,我们在这里比较了一个机器人与人提供的教育干预措施,在那里,ASD患有ASD的儿童参加了一场运动,致力于促进随后的社交技能实践。
2个工作日,从help@michigan.gov中检查“不完整的申请电子邮件”。所有信件将来自此电子邮件地址。•记下发布给您的计划审查的项目编号(PR#)•如果要求,请根据同一PR#提交更正•一旦批准了计划并完成工作以匹配
C. of Baat,MD 1;是。信仰,博士1; Raoul C. Reul,博士2; St. Allodji's Rodrigue,博士3:4,5;法国Bagsco,博士6; Bardi,医学博士,博士7.8; Fabial N. Belle博士9.10;朱利安·伯恩(Julianne Byrne),博士11; Elvira C. van Dan,医学博士,博士1; Ghazi Debiche,博士3:4.5;易卜拉欣达·达洛(Ibrahima Dallo),博士学位3:4,5;欲望抢,博士学位12; Lars Hjorth,医学博士,博士13; Momical Jankovic,医学博士,博士14; Claudia E. Kuehni,医学博士,博士9:15;吉尔·莱维特(Gill Levitt),医学博士16; Llanas Damien,MSC 3.4.5; Jacqueline Loon,医学博士,博士17; Lorna Z. Salt,医学博士,博士18; M. Maule,博士学位19;露西亚·米利格(Lucia Milig),博士20; Helena J.H. 去医学博士,博士1;例如M. Ronckers,博士1; Sacerdote,博士学位19;罗德里克·斯金纳(Roderick Skinner),医学博士,博士21.22;雅各布,医学博士,医学博士,博士23;克里斯蒂娜(Cristina)经文,理学硕士3.4.5; Haddy Nadia博士3.4.5; David L. Winter,MSC 2;浴室佛罗伦萨博士,3:4,4;迈克尔·霍金斯(Michael M. Hawkins),博士学位2;和Leontien C.M. 信用,医学博士,博士1.24C. of Baat,MD 1;是。信仰,博士1; Raoul C. Reul,博士2; St. Allodji's Rodrigue,博士3:4,5;法国Bagsco,博士6; Bardi,医学博士,博士7.8; Fabial N. Belle博士9.10;朱利安·伯恩(Julianne Byrne),博士11; Elvira C. van Dan,医学博士,博士1; Ghazi Debiche,博士3:4.5;易卜拉欣达·达洛(Ibrahima Dallo),博士学位3:4,5;欲望抢,博士学位12; Lars Hjorth,医学博士,博士13; Momical Jankovic,医学博士,博士14; Claudia E. Kuehni,医学博士,博士9:15;吉尔·莱维特(Gill Levitt),医学博士16; Llanas Damien,MSC 3.4.5; Jacqueline Loon,医学博士,博士17; Lorna Z. Salt,医学博士,博士18; M. Maule,博士学位19;露西亚·米利格(Lucia Milig),博士20; Helena J.H.去医学博士,博士1;例如M. Ronckers,博士1; Sacerdote,博士学位19;罗德里克·斯金纳(Roderick Skinner),医学博士,博士21.22;雅各布,医学博士,医学博士,博士23;克里斯蒂娜(Cristina)经文,理学硕士3.4.5; Haddy Nadia博士3.4.5; David L. Winter,MSC 2;浴室佛罗伦萨博士,3:4,4;迈克尔·霍金斯(Michael M. Hawkins),博士学位2;和Leontien C.M.信用,医学博士,博士1.24
Lei Li 1 , Miaoshui Bai 2 , Kelong Cai 3,4 , Doudou Cao 5 , Xuan Cao 6 , Jie Chen 7 , Xue-Ru Fan 8 , Peng Gao 8 , Wenjing Gao 9,12 , Dongzhi He 9 , Fanchao Meng 10,11 , Xi Jiang 1 , Litong Ni 5 , Xiuhong Li 12 , Lizi Lin 13 , Yingqiang Liu 1 , Zhimei Liu 14 , Ning Pan 15 , Qi Qi 5 , Bin Qin 16 , Xiaolong Shan 1 , Xiaojing Shou 8,10,17 , Longlun Wang 16 , Miaoyan Wang 18 , Xin Wang 15 , Dandan Xu 18 , Yin Xu 7 , Yang Xue 2 , Ting Yang 7 , Yun Zhang 16 , Jinhua Cai 16* , Huafu Chen 1* , Aiguo Chen 4,19* , Feiyong Jia 2* , Haoxiang Jiang 18* , Jin Jing 13* , Tingyu Li 7* , Shijun Li 5* , Wei Wang 20* , Jia Wang 6* , Lijie Wu 6* , Xuntao Yin 9* , Rong Zhang 10,17* , Xi-Nian Zuo 8* , China Autism Brain Imaging Consortium, Xujun Duan 1* *co-corresponding authors of this work 1 The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China.2 Department of Developmental and Behavioral Pediatrics, Children's Medical Center, The First Hospital of Jilin University, Jilin University, Changchun 130021, PR China.3 College of Physical Education, Yangzhou University, Yangzhou 225127, PR China 4 School of Sport and Brain Health, Nanjing Sport Institute, Nanjing 210014, PR China 5 Department of Radiology, First Medical Center, Chinese PLA General Hospital, Beijing 100853, PR China 6 Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin 150086, PR China 7 Children's营养研究中心,教育部儿童发育与疾病的关键实验室,国家儿童健康与疾病临床研究中心,中国国际科学与技术发展基础儿童发展与严重疾病的基础,重庆医学院儿童医院,重庆400042,PR中国PR中国8个州主要的知名神经科学研究,开发,脑海中的脑海中的主要实验室。北京100875,中国公共9号公关科学系,广州儿童神经发育关键实验室,妇女和儿童医疗中心,隶属于广州广州510623,PR中国公关510623,公关101623精神疾病,北京安丁医院,首都医科大学,北京,中国公关12公共卫生学院,深圳市,太阳YAT-SEN UNIVERSION,66 GONGCHANG ROAD,Guangming District 518107,深圳市,PR中国13号母亲和儿童健康部,
脑磁共振成像(MRI)被认为是评估患有脑瘫儿童(CP)的重要工具,因为在80%以上的CP儿童中,它异常,披露了导致神经系统状况的致病模式。因此,建议将MRI作为病史接受和神经系统检查后的第一个诊断步骤。随着遗传诊断的进步,对CP的遗传贡献越来越多,并且关于遗传测试在脑瘫诊断中的作用的问题。 本文概述了CP中报道的遗传发现,根据神经成像发现,对潜在的脑病理学进行了讨论。 欧洲脑瘫(SCPE)对CP中的神经成像发现分类为五个类别,这有助于对有关基因检测的决策进行分层。 主要的白物质和灰质损伤是迄今为止的(占发现的50%和20%)。 被认为是获得的。 在这里,诱发的遗传因素可能起着提高脆弱性的作用(当家族病史是积极的和/或缺失的原因外部因素时,应特别考虑)。 在马尔德开发和正常发现(每个大约11%)中,单基因原因更有可能,因此明确建议进行基因检测。 在其他类别中,必须考虑MRIIFING的确切性质,因为它可能表明遗传起源。随着遗传诊断的进步,对CP的遗传贡献越来越多,并且关于遗传测试在脑瘫诊断中的作用的问题。本文概述了CP中报道的遗传发现,根据神经成像发现,对潜在的脑病理学进行了讨论。欧洲脑瘫(SCPE)对CP中的神经成像发现分类为五个类别,这有助于对有关基因检测的决策进行分层。主要的白物质和灰质损伤是迄今为止的(占发现的50%和20%)。被认为是获得的。在这里,诱发的遗传因素可能起着提高脆弱性的作用(当家族病史是积极的和/或缺失的原因外部因素时,应特别考虑)。在马尔德开发和正常发现(每个大约11%)中,单基因原因更有可能,因此明确建议进行基因检测。在其他类别中,必须考虑MRIIFING的确切性质,因为它可能表明遗传起源。
或活动美国精神病学协会,2013年)。根据美国精神病学协会(2013年),自闭症的患病率为1%。 在ASD患者中经常发现感觉困难(Kojovic等人,2019年),特别是体感系统困难,例如异常的皮肤敏感性[Asmika等,2018; Zhong等人,2013年](包括压力检测)和本体感受。 这些感觉异常可能会导致社会发展受损的病理生理过程[]。 本体感受是人体正在进行的空间配置的感觉注册。 它包括身体段在太空中的位置,力和运动速度以及重力和身体平衡的整合。 本体感受会影响行为调节和运动控制]。 Blanche等。 表明,患有ASD的儿童目前的本体感受的处理困难与其他发育障碍儿童及其通常发展的儿童不同。 但是,Morris等人,2015年,Fuentes等人,2011年没有确认实验范式中的这些本体感受困难。 缺陷可能主要依赖于多感官集成[]。根据美国精神病学协会(2013年),自闭症的患病率为1%。感觉困难(Kojovic等人,2019年),特别是体感系统困难,例如异常的皮肤敏感性[Asmika等,2018; Zhong等人,2013年](包括压力检测)和本体感受。这些感觉异常可能会导致社会发展受损的病理生理过程[]。本体感受是人体正在进行的空间配置的感觉注册。它包括身体段在太空中的位置,力和运动速度以及重力和身体平衡的整合。本体感受会影响行为调节和运动控制]。Blanche等。表明,患有ASD的儿童目前的本体感受的处理困难与其他发育障碍儿童及其通常发展的儿童不同。但是,Morris等人,2015年,Fuentes等人,2011年没有确认实验范式中的这些本体感受困难。缺陷可能主要依赖于多感官集成[]。
课程说明EEC1000 |幼儿教育简介| 3.00学分本课程将提供从出生到8岁的幼儿教育的概述。学生将对家庭和社会对幼儿的影响有所了解,一种基于关系的响应式计划计划计划的方法计划原理,游戏在学习中的作用以及教育神经科学在幼儿时期的重要性。(需要在幼儿中心的二十小时学习)。
摘要 从儿童期到青少年期,大脑经历了深刻的结构和功能转变。越来越多的证据表明,神经发育以分层的方式进行,其特点是大脑区域和网络中的成熟模式不同。然而,大脑活动内在时空传播的成熟仍未得到充分探索。本研究旨在通过描述从儿童期到成年早期的时空传播来弥合这一空白。通过利用最近开发的捕捉时间滞后动态传播的方法,我们沿着三个轴描述了内在动态传播:感觉联想 (SA)、“任务正”到默认网络 (TP-D) 和躯体运动视觉 (SM-V) 网络,这些网络从儿童期到成年早期逐渐发展为类似成人的大脑动态。重要的是,我们证明,随着参与者的成熟,SA 和 TP-D 传播状态的出现时间会延长,这表明他们在这些状态下花费的时间更长。相反,SM-V 传播状态的流行率在发育过程中下降。值得注意的是,沿 SA 轴自上而下的传播表现出与年龄相关的发生率增加,与自下而上的 SA 传播相比,它更能预测认知分数。这些发现在两个独立的队列(总共 N = 677)中得到了复制,强调了这些发现的稳健性和普遍性。我们的研究结果为青少年时期成人样功能动态的出现及其在支持认知方面的作用提供了新的见解。关键词:神经发育、fMRI、皮质发育、动态大脑活动、青春期、自上而下处理
摘要:早产是一种通常与认知控制(CC)障碍有关的神经发育风险状况。最近的证据表明,CC可以通过联想学习隐式适应。在本研究中,我们研究了在早产(PT; n = 21;平均年龄8±1.3岁;胎龄30±18.5周)和满月(ft; n = 20; n = 20;平均年龄8±1.3岁)的儿童的能力,与自早期(pt; n = 21;平均年龄8±1.3岁)和全年前(ft; n = 20;平均年龄8±1.3岁)的儿童儿童的能力。所有儿童在进行动态时间预测(DTP)任务时均经历了HD-EEG记录,这是一个简单的S1 – S2检测任务,目的是设计旨在生成命令性刺激的局部 - 全球时间预测性。管理威斯康星州卡排序测试(WCST)以测量显式CC。PT组比FT组显示出更早和较慢(DTP)和持久性(WCST)的响应。此外,预处理表现出较差的自适应CC,如效率较小的全球响应速度调整所表明的那样。这种行为模式通过减少且对全局操纵预期的偶有性负变化(CNV)和不同皮质源募集的敏感性反映。这些发现表明,隐式cc可能是与早产相关的非典型认知发展的可靠内表型标记。