Raymond J. DiCamillo、Kevin M. Gallagher、Sara A. Clark、John M. O’Toole、RICHARDS LAYTON & FINGER, P.A.,特拉华州威尔明顿;Adam H. Offenhartz、Marshall R. King、Shireen A. Barday、Nathan C. Strauss、GIBSON, DUNN & CRUTCHER LLP,纽约州纽约市;Tyler A. Amass、GIBSON, DUNN & CRUTCHER LLP,科罗拉多州丹佛市;原告及反诉被告 AB Stable VIII LLC 的律师。A. Thompson Bayliss、Michael A. Barlow、Stephen C. Childs、ABRAMS & BAYLISS LLP,特拉华州威尔明顿; Michael B. Carlinsky、Andrew J. Rossman、Christopher D. Kercher、Rollo C. Baker IV、QUINN EMANUEL URQUHART & SULLIVAN, LLP、纽约、纽约;Kap-You Kim、PETER & KIM ATTORNEYS AT LAW、韩国首尔;被告和反诉原告的律师 Maps Hotels and Resorts One LLC、Mirae Asset Capital Co., Ltd.、Mirae Asset Daewoo Co., Ltd.、Mirae Asset Global Investments, Co., Ltd. 和 Mirae Asset Life Insurance Co., Ltd. LASTER, V.C.
1 印度韦洛尔基督教医学院,2 印度班加罗尔 REVA 大学,3 印度昌迪加尔医学与教育研究生院,4 印度新德里全印度医学科学院,5 印度钦奈 Kanchi Kamakoti 儿童信托医院,6 印度班加罗尔圣约翰医学院,7 印度德里 Chacha Nehru Bal Chikitsalaya,8 印度新德里健康研究与发展中心 - 应用研究协会,9 印度卢迪亚纳基督教医学院,10 印度浦那 KEM 医院与研究中心,11 印度拉克索尔 Duncan 医院,12 印度孟买 Topiwala 国家医学院和 BYL Nair 慈善医院,13 印度加尔各答 ICMR- 国家霍乱和肠道疾病研究所,14 印度马纳里 Lady Willingdon 医院,15 Makunda 基督教医院印度卡里姆詹麻风病综合医院、16 印度安得拉邦巴塔拉帕利农村发展信托医院、17 印度南杜尔巴尔 Chinchpada 基督教医院、18 印度德里大学 SSN 学院微生物学系、19 英国剑桥大学医学系剑桥治疗免疫学与传染病研究所 (CITIID)
环境健康科学与工程理事会 编写者: 美国陆军公共卫生中心 (APHC): Stephen Comaty 先生 环境健康风险评估部 Brandolyn Thran 博士 环境健康风险评估部 橡树岭国家实验室 (ORNL): Anthony Armstrong 先生 环境科学部 Annetta Watson 博士 环境科学部 致谢 Robert Bock 先生 (ORNL) 为美国公共卫生协会研究民用指南提供了支持。本文件还受益于 APHC 主题专家 Lauren Anderson 女士、Chris Childs 先生、Alexander Zook 先生、Andrea Clark 女士、Tom Runyon 先生、George White 先生、Steven Witt 先生和 Matthew McAtee 先生提供的实质性建议。美国陆军坦克汽车研究开发与工程中心 (TARDEC) 部队投射技术的 Jay Dusenbury 博士也提供了有意义且有见地的评论。问题和意见可以转发至— 美国陆军公共卫生中心环境健康风险评估部 5158 Blackhawk Road (MCHB-PH-HRA) Aberdeen Proving Ground, Maryland 21010-5403 DSN 584-2953 或商业电话 410-436-2953
R&D实习生| Sandia国家实验室2023年6月 - Ojas Parekh和John Kallaugher主题:估计当地哈密顿量最佳产品状态的硬度。 量子最大切割,矢量最大切割和量子约束优化问题。 替代查询模型。 暑期学校研究员| Los Alamos国家实验室2019年夏季YiğitSubaşı主题:近期(NISQ)量子算法。 研究了中路测量和重置以构建纠缠光谱的电路,这些电路是降噪和较低的。 使用Qiskit,Python,Unix,Jupyter实施了嘈杂的模拟。 带有git的托管项目。 在Honeywell量子硬件上测试了算法。 研究助理|图理论计算发现实验室,VCU 2018,由Craig Larson主题监督:适用于图理论的自动化猜想软件。 维护图的数据库,其属性和已知定理。 托管开源项目,并使用git,github和sage/python进行了编程。 NSF REU研究人员|马里兰州大学2017年夏季的Quics,由Andrew Childs,Jianxin Chen和Amir Kalev主题:量子断层扫描。 研究了识别量子纯状态所需的最少数量的Pauli可观察物。 研究助理|量子计算实验室,VCU 2015–2016R&D实习生| Sandia国家实验室2023年6月 - Ojas Parekh和John Kallaugher主题:估计当地哈密顿量最佳产品状态的硬度。量子最大切割,矢量最大切割和量子约束优化问题。替代查询模型。暑期学校研究员| Los Alamos国家实验室2019年夏季YiğitSubaşı主题:近期(NISQ)量子算法。研究了中路测量和重置以构建纠缠光谱的电路,这些电路是降噪和较低的。使用Qiskit,Python,Unix,Jupyter实施了嘈杂的模拟。带有git的托管项目。在Honeywell量子硬件上测试了算法。研究助理|图理论计算发现实验室,VCU 2018,由Craig Larson主题监督:适用于图理论的自动化猜想软件。维护图的数据库,其属性和已知定理。托管开源项目,并使用git,github和sage/python进行了编程。NSF REU研究人员|马里兰州大学2017年夏季的Quics,由Andrew Childs,Jianxin Chen和Amir Kalev主题:量子断层扫描。研究了识别量子纯状态所需的最少数量的Pauli可观察物。研究助理|量子计算实验室,VCU 2015–2016
John Towns 4 Craig A. Stewart 5* 1 Pervasive Technology Institute, Office of the VP for IT, Indiana University, Bloomington, IN, 47408, USA 2 Research Technologies, Office of the VP for IT, Indiana University, Bloomington, IN, 47408, USA 3 Rosen Center for Advanced Computing, Purdue University, West Lafayette, IN 47906, USA 4 National Center for超级计算申请,伊利诺伊大学Urbana-champaign,Urbana,IL 61801,美国5计算机科学系,印第安纳大学,布卢明顿,印第安纳州布卢明顿,47408 * jtowns@illinois.edu(城镇),stewart@iu.edu(stewart)利益宣言(资金来源)作者宣布已宣布财务支持,以进行本文的研究,作者身份和出版,特别是NSF奖,特别是:towns(Snapp-Childs IU-Childs IU-Concontract Pi Pi)(Snapp-Childs iu concontract Pi)(#10555555555545,#1545,#1545,#1545,汉考克(#1445604,#2005506); Xiaohui Carol Song(Smith,Co-Pi)(#2005632)和IU Pervasive技术研究所的支持。致谢这项工作得到以下组织的支持:?国家科学基金会赠款:Towns(Snapp-Childs IU分包PI)(#1053575,#1548562);汉考克(#1445604,#2005506); Xiaohui Carol Song(Smith,Co-Pi)(#2005632)。Snapp-Childs还得到了印第安纳大学Pervasive Technology Institute的支持。我们感谢Kristol Hancock的编辑和Katja Bookwalter的图形设计。
我们研究并行性如何加速量子模拟。提出了一种并行量子算法来模拟一大类具有良好稀疏结构的汉密尔顿量的动力学,这些汉密尔顿量称为均匀结构汉密尔顿量,其中包括局部汉密尔顿量和泡利和等各种具有实际意义的汉密尔顿量。给定对目标稀疏汉密尔顿量的 oracle 访问,在查询和门复杂度方面,以量子电路深度衡量的并行量子模拟算法的运行时间对模拟精度 ϵ 具有双(多)对数依赖性 polylog log(1 /ϵ )。这比以前没有并行性的最优稀疏汉密尔顿模拟算法的依赖性 polylog(1 /ϵ ) 有了指数级的改进。为了获得这个结果,我们基于 Childs 的量子行走引入了一种新的并行量子行走概念。目标演化幺正用截断泰勒级数近似,该级数是通过并行组合这些量子行走获得的。建立了一个下限Ω(log log(1 /ϵ )),表明本文实现的门深度对ϵ 的依赖性不能得到显著改善。我们的算法被用来模拟三个物理模型:海森堡模型、Sachdev-Ye-Kitaev 模型和二次量子化的量子化学模型。通过明确计算实现预言机的门复杂度,我们证明了在所有这些模型上,我们的算法的总门深度在并行设置下都具有 polylog log(1 /ϵ ) 依赖性。
注释 13 挤压膜阻尼器:运行、模型和技术问题 挤压膜轴承阻尼器是润滑元件,可在机械系统中提供粘性阻尼。旋转机械中的挤压膜阻尼器提供结构隔离、降低转子对不平衡的响应幅度,并且在某些情况下,有助于抑制转子动力学不稳定性。 背景 转子动力学中最常见的问题是过高的稳态同步振动水平和次同步转子不稳定性。可以通过改善平衡、对转子轴承系统进行修改以使系统临界速度超出工作范围或引入外部阻尼来限制在穿越临界速度时的峰值幅度,从而减轻第一个问题。可以通过消除不稳定机制、尽可能提高转子轴承系统的固有频率或引入阻尼来提高不稳定的起始转子速度,从而避免次同步转子不稳定 [Vance 1988, Childs 1993]。轻型高性能发动机表现出灵活性增加的趋势,导致对不平衡的高度敏感性,振动水平高,可靠性降低。挤压油膜阻尼器 (SFD) 是高速涡轮机械的重要组成部分,因为它们具有耗散振动能量和隔离结构部件的独特优势,以及改善动态性能的能力
摘要53背景:最近的流行病学证据将早期肥胖症和代谢失调与成人54精神病脆弱性联系起来,尽管因果关系尚不清楚。在高度可遗传的55种精神病中建立因果关系需要:1)证明早期的代谢因素在遗传56脆弱性和精神病轨迹之间介导的早期代谢因素,2)解剖机制,导致遗传上的早期肥胖57个易受伤害的个体,以及3)澄清下游神经发育症状的早期症状,以链接到早期的症状。59方法:为了解决这些关键问题,我们调查了双向途径,将行为,BMI和60个神经发育轨迹联系起来,在一个独特的184个患者的独特纵向队列中,具有高遗传性的精神病风险,61由于22q11.2 deletion综合征(22q11ds),以及182个神经对照,紧随其后的是Childs,其次是Child tocticals,紧随其后。我们62综合重复的BMI测量以及临床/神经认知表型和神经影像学。我们63研究了BMI轨迹与精神病风险之间的关系,并测试了皮质变化还是64小脑发育是否可以构成这种关联的基础。65
参考:1。Childs CE,Calder PC和Miles EA。饮食和免疫功能。营养。2019年8月; 11(8):1933 2。Wastyk HC,Fragiadakis GK,Perelman D,Dahan D,Merrill BD,Yu FB等。肠道型微生物群饮食调节人的免疫状态。单元格。2021年8月; 184(16):4137-4153 3。Brambilla D. Manncuso C,Scuderi MR,Bosco P,Cantarella G,Lempereur L等。抗氧化剂补充剂在免疫系统,肿瘤和神经退行性疾病中的作用:评估风险/收益概况的观点。Nutr J2008; 7:29-33 4。Fernando I&Schend J.15种增强免疫系统的食物。Healthline网站。https://www.healthline.com/health/food-nutrition/foods-that-boost-the-mmune-system。审查并更新了2023年6月。2023年9月访问。4。ding s,江H和法。通过多酚/ J免疫功能调节免疫功能。2018年4月。 2018:doi:10.1155/2018/1264074 5。营养来源:营养与免疫力。哈佛网站。https://www.hsph.harvard.edu/nutritionsource/nutrition-and-ymmunity/。 出版了2023年。 2023年9月访问。 6。 Barrie L&Kennedy K. 22种可以增强您的免疫系统的食谱。 日常健康网站。 https://www.everydayhealth.com/diet-nutrition/recipes-that-can-help-mententen-your-immune-system/。 审查了2023年3月。 2023年9月访问。https://www.hsph.harvard.edu/nutritionsource/nutrition-and-ymmunity/。出版了2023年。2023年9月访问。6。Barrie L&Kennedy K. 22种可以增强您的免疫系统的食谱。日常健康网站。https://www.everydayhealth.com/diet-nutrition/recipes-that-can-help-mententen-your-immune-system/。审查了2023年3月。2023年9月访问。
半导体设备热载体降解的物理建模需要准确了解载体分布函数。Childs等。预测,分散功能的高能尾受电子散射(EES)[1]的强烈影响。通过使用迭代方法,在EES存在下是非线性的玻尔兹曼方程来显示这一点。进行了以下近似值:1)在采用未知的分布函数(DF)的各向同性部分的能量依赖性形式主义; 2)假定声子能量比动能小得多。因此,迭代方法不适用于低能范围,而使用蒙特卡洛方法。 3)在散落率中,EES率的贡献被忽略了。虽然需要1)使问题在数字上可以处理,但近似值2)和3)尚不清楚,因为它们并不能显着简化问题,但可以大大改变结果。在这项工作中,我们使用的不是玻尔兹曼方程,一个两粒子动力学方程,其优势在于,在EES的主体中也是线性的。在[2]中已经预先提出了一种用于均匀电场的两粒子蒙特卡洛法,该方法已经计算出轨迹对以对两个粒子的六维k空间进行采样。我们扩展了固定的蒙特卡洛算法,以说明空间变化的电场。假设单谷带结构模型和硅的材料参数,获得了以下数值结果。图1显示了均匀电场的不同类型散射事件的频率。尽管EES是DOM-
