CD19 导向的嵌合抗原受体 (CAR) T 细胞疗法彻底改变了 B 细胞急性淋巴细胞白血病 (B-ALL) 患者的治疗。在肿瘤临床试验中,早期临床开发同时在儿童和成人中进行,这在有些肿瘤临床试验中是独一无二的。然而,在随后的几年里,复发/难治性 (r/r) 恶性肿瘤的成年患者数量不断增加,导致多种针对各种恶性肿瘤的 CAR T 细胞产品的开发加速,目前已有六种 CAR T 细胞产品获得 FDA 批准用于成人患者。相比之下,FDA 仅批准一种用于儿科患者的 CAR-T 细胞疗法:tisagenlecleucel,该疗法获批用于 ≤ 25 岁的难治性 B 细胞前体 ALL 患者或第二次或以后复发的 B 细胞 ALL 患者。 Tisagenlecleucel 也在对复发/难治性 B 细胞非霍奇金淋巴瘤的儿科患者进行评估,但尚未获批用于此适应症。所有其他经 FDA 批准的适用于成人患者的 CD19 导向 CAR-T 细胞疗法(axicabtagene ciloleucel、brexucabtagene autoleucel 和 lisocabtagene maraleucel)目前正在对儿童进行研究,有些病例已获得初步结果。随着数据量和复杂性不断增长,快速吸收和实施这些数据的必要性也在增加。在考虑“非典型”情况时尤其如此,例如当患者与关键临床试验中纳入的患者特征不完全一致时,或者当还有其他治疗方案(例如造血干细胞移植 (HSCT) 或双特异性 T 细胞接合器 (BITE))可用时。因此,我们对目前有关在儿科患者中使用 CD19 靶向 CAR-T 细胞疗法的文献进行了相关总结,并试图为寻求有关特定临床情况的更多数据的临床医生提供指导。
摘要:靶向蛋白质降解的领域呈指数增长。然而,对提供机械见解的药代动力学/药效学模型的需求未满足,同时在药物发现环境中实际上也很有用。因此,我们已经开发了一个全面的建模框架,可以应用于常规项目的实验数据,到:(1)基于准确的降解指标评估Protac,(2)指导最关键参数的化合物优化,(3)将降解降解到下游药物效应。所提出的框架包含了许多第一个特征:(1)一种机械模型,可以在Protac浓度降解中效应钩子效应,(2)(2)量化靶占用作用在Protac动作机制中的作用和(3)靶向降解和靶标的proticat效应的效应的靶标在protak protica的作用机制中的作用和靶标的proticat效应的效应。为了说明适用性并建立信心,我们采用了这三种模型来分析来自不同项目和目标的各种化合物的示例性数据。提出的框架使研究人员可以量身定制其实验性工作,并更好地了解其结果,最终导致更成功的Protac发现。这里的重点在于体外药理学实验,但还讨论了体内研究的关键含义。
mm是最遇到的血液系统恶性肿瘤,总生存率较低[1]。它在浆细胞中产生,导致单克隆副蛋白的积累,导致骨破坏并导致末端器官损伤[2]。MM的经典表现包括高钙血症,贫血,肾功能衰竭,复发性细菌感染,裂解骨骼病变和外胸腔软组织浆细胞瘤[3]。 虽然疾病的发生率正在增加,但仍被认为是一种难以治愈的疾病。 尽管可用的治疗选择,例如免疫调节药物(IMID),蛋白酶体抑制剂(PIS)和其他单克隆抗体,但该疾病倾向于最终复发并复发,这进一步降低了预后[4]。 mm引起了大量的发病率和死亡率,这需要进一步研究以找到解决该疾病的解决方案[1,3]。MM的经典表现包括高钙血症,贫血,肾功能衰竭,复发性细菌感染,裂解骨骼病变和外胸腔软组织浆细胞瘤[3]。虽然疾病的发生率正在增加,但仍被认为是一种难以治愈的疾病。尽管可用的治疗选择,例如免疫调节药物(IMID),蛋白酶体抑制剂(PIS)和其他单克隆抗体,但该疾病倾向于最终复发并复发,这进一步降低了预后[4]。mm引起了大量的发病率和死亡率,这需要进一步研究以找到解决该疾病的解决方案[1,3]。
摘要:Cas9(DCAS9)核酸内切酶的催化无效突变体具有多种生物医学应用,最有用的是转录的激活/抑制。dcas9家族成员也正在成为潜在的实验工具,用于在独立活细胞和完整组织的水平上进行基因映射。我们对CAS9介导的核室可视化的一组工具进行了初步测试。我们研究了doxycycline(DOX) - 可诱导(TET-ON)的细胞内分布,这些构建体的构造中编码DCAS9直系同源物(ST)(ST)和脑膜炎N.脑膜炎(NM)与EGFP和MCHERRY FOLORESCENT蛋白(FP)融合的人类A549细胞。我们还研究了这些嵌合荧光构建体的时间依赖性表达(DCAS9-FP)在活细胞中诱导中的诱导中,并将其与实验性DCAS9-FP表达的时间过程进行了比较灌注。在诱导后24小时内,肿瘤异种移植物发生了麦克利 - 奇氏菌表达的体内诱导,并通过使用皮肤的光学清除(OC)来可视化。OC通过局部应用Gadobutrol启用了肿瘤异种移植物中FP表达的高对比度成像,因为红色和绿色通道的FI增加了1.1-1.2倍。
摘要:嵌合抗原受体(CAR)T细胞疗法是患有B细胞和浆细胞衍生的血液学恶性肿瘤患者的有前途的治疗选择,并且正在适合治疗固体癌症。然而,CAR T与经常严重的毒性有关,例如细胞因子释放综合征(CRS),免疫效应细胞相关的神经毒性综合征(ICAN),巨噬细胞激活综合征(MAS)和延长的细胞质综合征 - 延长的细胞质 - 一种或多个层中的成熟血细胞数量减少。尽管我们了解这些毒性的一些驱动因素,但它们的机制仍在研究中。由于汽车T方案是一个复杂的多步骤过程,并且经常发生不良事件,因此需要改善利益风险比率的方法。在这篇综述中,我们讨论了正在研究的各种潜在解决方案,以解决CAR T的局限性。首先,我们讨论了与CAR T相关的胞质量的发生率和特征及其与降低的CAR T细胞效率的关联。我们审查了在汽车T方案期间管理或减轻细胞质的方法的方法 - 包括生长因子的使用,同种异体救援,自体造血干细胞输注和替代条件方案。最后,我们引入了新的方法来改善汽车T细胞输注产品以及CAR T和克隆造血的含义。
流感病毒菌株之间的抗原变异性对开发广泛的保护性,持久的疫苗构成了重大挑战。当前的年度疫苗靶向特定菌株,需要准确预测有效中和。尽管系统发育群体之间的序列多样性,但血凝素(HA)头域的结构仍然高度保守。利用这种保护,我们设计的跨组嵌合具有结合远处菌株的抗原表面。通过结构引导的受体结合位点(RBS)残基的移植,我们在H1 HA支架上显示了H3 RBS。这些嵌合免疫原子会引起能够中和底菌株和远端菌株的跨组多克隆反应。此外,嵌合体整合了异三聚体免疫原子,增强了模块化疫苗的设计。这种方法使包含各种应变段能够产生广泛的多克隆响应。将来,这种模块化免疫原子可以用作评估免疫力优势和完善免疫策略的工具,从而提供了桥接和增强免疫力患者免疫反应的潜力。该策略有望推进普遍的流感疫苗开发。
鉴于当前迈向生物技术和基因工程的动力,有关技术的问题仍然是当今哲学家的主要问题。人类与技术之间的复杂关系已被广泛记载,其中1个竞争在于对技术的纠纷。在两端的范围内都是实体和器乐护理(即,在说谎的技术下的自主力量的实质原理和人类对技术控制的工具主义原则)。从最广泛的意义上讲,实质性仍然存在于现代主义传统之内,最著名的是与马丁·海德格尔(Martin Heidegger)和雅克·埃洛尔(Jacques Ellul)有关,而后者则与后现代传统相关,通常与唐·伊德(Don Ihde)和约翰·杜威(John Dewey)有关。ihde认为,海德格尔(Heidegger)并没有克服寻求稳定的可能性条件的本质主义项目,以实现真理。他批评了这些理由的现象学工作,特别是海德格尔(Heidegger),他认为,他回到了旧的存在形而上学的幻想中。对于IHDE,由于现代技术与传统技术完全不同,因此它们需要一种不同的哲学方法来理解它们。他认为,现代主义项目遵守终极真理和绝对语言的幻想,这最终导致了基本现实的幻想。而言,对于IHDE而言,与所谓的真实现实相比,偶然演讲的世界被证明是更真实的和主要的。
• 用于治疗对一线化学免疫疗法有抵抗性或在一线化学免疫疗法后 12 个月内复发的大 B 细胞淋巴瘤成人患者 • 用于治疗经过两线或两线以上全身疗法治疗后复发或难治性大 B 细胞淋巴瘤成人患者,包括未另行指定的弥漫大 B 细胞淋巴瘤 (DLBCL)、原发性纵隔大 B 细胞淋巴瘤、高级别 B 细胞淋巴瘤和源自滤泡性淋巴瘤的 DLBCL • 用于治疗经过两线或两线以上全身疗法治疗后复发或难治性滤泡性淋巴瘤 (FL) 成人患者 本政策中列出的事先授权标准基于 FDA 标记的适应症或 NCCN 证据级别 1 或 2A。对于不符合下述政策标准的请求,请参阅 FDA 批准药物的标签外使用政策。政策指南:1. 随着新药的上市,本政策可能会经常修订。一些药物
在医院或治疗中心,汽车T细胞被解冻,然后注入患者。许多患者的短暂疗程是一种或多种化学疗法剂,以减少体内正常T细胞的数量。这称为“淋巴结序”。此过程很重要,因为它为接受输注的患者中的CAR T细胞“造就空间”。然后,通过静脉输注(IV)输注或通过现有的中心线将转基因的CAR T细胞注入患者的血液中。该过程通常需要少于30分钟。在体内,汽车T细胞寻找表达抗原已被训练的抗原细胞。这些“攻击者”细胞在其表面上使用靶抗原识别并破坏细胞。遇到抗原时,汽车T细胞被激活并攻击并杀死癌细胞。这些T细胞开始制作自己的副本,并在整个体内增加数量。
Axicabtagene ciloleucel (Yescarta) is a CD19-directed, genetically-modified autologous T cell immunotherapy that was first approved by the U.S. Food and Drug Administration (FDA) in October 2017 for the treatment of adult patients with relapsed or refractory large B-cell lymphoma after two or more lines of systemic therapy, including diffuse large B-cell lymphoma (DLBCL) not另外指定的(NOS),原发性纵隔大B细胞淋巴瘤,高级B细胞淋巴瘤和由卵泡淋巴瘤引起的DLBCL。在2021年3月,FDA批准了两种或多种全身性治疗线后的复发或难治性卵泡淋巴瘤(FL)的新指示。这是基于回应率的加速批准,并且对此适应症的持续批准可能取决于确认试验中对临床益处的验证和描述。在2022年4月,FDA批准了另外的大型B细胞淋巴瘤指示。新的适应症是用于对一线化学免疫疗法难治性的大B细胞淋巴瘤患者的治疗,或者在一线化学疗法的12个月内复发。a Toxabtagene cileoleucel先前曾被FDA授予Innovator Drug Company赞助的FDA,用于2014年3月治疗DLBCL,以治疗2016年4月的原发性B-Cell淋巴瘤,以及2016年4月的卵泡淋巴瘤治疗。由Innovator Drug Company赞助的其他孤儿迹象包括对淋巴结和旋转边缘区域淋巴瘤的治疗(2020年3月)。第一个汽车T细胞疗法是Tisagenlecleucela toxabtagene ciloleucel通过用编码嵌合抗原受体(CAR)的转基因对患者自己的T细胞进行重编程,以识别和消除表达CD19表达CD19的恶性和正常B细胞。治疗涉及去除,基因修饰,然后重新侵蚀患者自己的T细胞。a tocialabtagene cileoleucel是第二种由FDA批准的T细胞疗法。