使用几何和拓扑描述符进行基于知识的优化的流形学习。*d。 Muñoz,F。Chinesta,E。Nadal,O。Allix,J。Ródenas,加速Fe^2通过(无模型)数据驱动的计算方法对有限应变制度进行计算
数字孪生:迈向全新的联盟模式 – 数据 Francisco Chinesta、Jean Louis Duval 和 Elias Cueto 主席 ESI @ PIMM - Arts et Métiets ParisTech / Fédération Francilienne de Mécanique Francisco.Chinesta@ensam.eu 最初,行业采用虚拟技术模拟工具形式的双胞胎,通过数字模型代表材料、过程、结构和系统的物理特性。 21 世纪初,数据突然进入工程领域。多年来,它们被用于模型欠发达或仍然更加不确定的其他领域。可以使用人工智能技术对大量收集的数据进行分类、剖析、分析等。我们正处于数字孪生王国中,物理模型必须在精度和速度之间进行选择,已被数据取代。这里我们有离线虚拟双胞胎和在线数字双胞胎。然后,虚拟与数字、物理(由于模型简化技术而虚拟地实时表达自己)与数据(通过人工智能表达自己)相结合。然而,尽管取得了巨大的成功,但很快就出现了某些困难:在许多情况下,即使持续调整也无法描述和预测观察到的现实。
摘要 锂离子电池因其高能量和功率密度而被广泛应用于汽车工业(电动汽车和混合动力汽车)。然而,这也带来了新的安全性和可靠性挑战,需要开发新型复杂的电池管理系统 (BMS)。BMS 可确保电池组安全可靠地运行,要实现这一点,必须求解一个模型。然而,当前的 BMS 并不适合汽车行业的规范,因为它们无法以实时速率和在广泛的操作范围内提供准确的结果。因此,这项工作的主要重点是开发混合动力双胞胎,如 Chinesta 等人所介绍的那样。(Arch Comput Methods Eng (in press), 2018. 以满足新一代 BMS 的要求。为了实现这一目标,三种降阶模型技术应用于最常用的基于物理的模型,每种技术适用于不同的应用范围。首先,使用 POD 模型大大减少伪二维模型的仿真时间和计算工作量,同时保持其准确性。通过这种方式,可以在节省时间和计算资源的同时进行电池设计、参数优化和电池组仿真。此外,还研究了它的实时性能。接下来,使用稀疏-本征广义分解 (s-PGD) 从数据构建回归模型。结果表明,它实现了带有电池组的整个电动汽车 (EV) 系统的实时性能。此外,由于获得的代数表达式简单,该回归模型可以毫无问题地用于 BMS。使用系统仿真工具 SimulationX(ESI ITI GmbH)演示了使用所提方法对 EV 的仿真。德国德累斯顿 。此外,使用 s-PGD 创建的数字孪生不仅可以进行实时仿真,还可以根据实际驾驶条件和实际驾驶周期调整其预测,从而实时更改规划。最后,开发了一种基于动态模式分解技术的数据驱动模型,以提取一个在线模型来纠正预测和测量之间的差距,从而构建第一个(据我们所知)能够从数据中自我校正的锂离子电池混合孪生。此外,得益于该模型,上述差距在驾驶过程中得到了纠正,同时考虑到了实时限制。
摘要 锂离子电池因其高能量和高功率密度而被广泛应用于汽车工业(电动汽车和混合动力汽车)。然而,这也带来了新的安全性和可靠性挑战,需要开发新型复杂的电池管理系统 (BMS)。BMS 可确保电池组安全可靠地运行,要实现这一点,必须求解一个模型。然而,目前的 BMS 并不适合汽车行业的规范,因为它们无法在实时速率和广泛的操作范围内提供准确的结果。因此,这项工作的主要重点是开发一种混合动力双胞胎,如 Chinesta 等人所介绍的那样。 (Arch Comput Methods Eng(印刷中),2018。以满足新一代 BMS 的要求。为此,三种降阶模型技术被应用于最常用的基于物理的模型,每种技术针对不同的应用范围。首先,使用 POD 模型来大大减少伪二维模型的仿真时间和计算工作量,同时保持其准确性。通过这种方式,可以节省时间和计算资源,同时进行电池设计、参数优化和电池组仿真。此外,还研究了它的实时性能。接下来,利用稀疏-固有广义分解 (s-PGD) 从数据构建回归模型。结果表明,它可实现带有电池组的整个电动汽车 (EV) 系统的实时性能。此外,由于获得的代数表达式简单,该回归模型可在 BMS 中毫无问题地使用。使用系统仿真工具 SimulationX(ESI ITI GmbH)演示了采用所提方法的 EV 仿真。德国德累斯顿)。此外,使用 s-PGD 创建的数字孪生不仅可以进行实时模拟,还可以根据实际驾驶条件和实际驾驶周期调整其预测,从而实时更改规划。最后,开发了一种基于动态模式分解技术的数据驱动模型,以提取在线模型来纠正预测和测量之间的差距,从而构建出第一个(据我们所知)能够从数据中自我纠正的锂离子电池混合孪生。此外,由于该模型,上述差距在驾驶过程中得到了纠正,同时考虑到实时限制。