在当前情况下,由于技术的需求和供应不断增长,各行各业已经针对那些因年老问题或某种疾病而面临记忆丧失的人制定了许多严格的实施方案。随着世界越来越倾向于在各种高端手术中使用机器人治疗。芯片植入物的引入也已不远。射频识别 (RFID) 是一种集成电路上的微芯片植入物,已被引入人类和动物。它被用来追踪那些在走动时容易迷路的人,这样他们的同伴就可以知道特定个体目前在哪里,也可以识别个体的各种特征。它可以用于任何不同领域的不同目的。
微电子技术的早期发展因以下奖项而受到赞誉:1956 年,肖克利、巴丁和布拉顿因他们在半导体方面的研究以及他们在 1947 年发现晶体管效应而获得诺贝尔物理学奖(如今,任何尖端芯片中都有数十亿个晶体管);2000 年,基尔比因在 1958 年发明集成电路(或芯片)中所发挥的作用而获得诺贝尔物理学奖。集成电路是“计算机和其他电子设备的重要组成部分”。半导体也被称为“集成电路”或“芯片”。与蒸汽机一样,芯片是少数“通用技术”之一,即开启了整个技术进步和经济增长时代的突破性创新。芯片已无处不在,被广泛应用于从计算机到医疗设备、5G 和人工智能系统以及安全和防御设备等一系列产品中。芯片是数字化转型的引擎。
应用研究、开发和部署活动。大部分工作由美国能源部的 17 个国家实验室执行,包括位于华盛顿州的太平洋西北国家实验室 (PNNL),这些实验室雇用了数千名科学家,拥有独一无二的世界级研究能力和用户设施,每年有超过 36,000 名大学和工业研究人员使用这些设施。加强能源存储、电网现代化和碳捕获等领域的研究,对于以可承受的价格减少温室气体排放和重建清洁能源解决方案的国内制造至关重要。
到本世纪末,国家技术中心应该被全世界视为广泛的半导体生态系统中的重要资源,拥有受人尊敬的科学家和工程师网络、最先进的设施、有效的项目和经过验证的技术成就。
量子计算的优势。15 在大量纠缠簇态下,利用光子进行通用量子计算是可能的。16–18 集成量子光子学为基础量子物理研究和深度量子应用的实现提供了一个紧凑、可靠、可重新编程和可扩展的平台。19 利用成熟的互补金属氧化物半导体 (CMOS) 制造工艺,集成光子量子技术自 2008 年在硅波导电路上的受控非逻辑门中首次演示以来取得了重大进展。20 这包括先进材料系统的开发、20–32 主要量子通信协议的实现、28、32、33 以及量子计算和量子模拟算法的原理验证演示。34–36 我们推荐参考文献 19 和 37 中有关这些主题的其他评论。在本综述中,我们总结了在集成硅光子量子芯片上产生、操纵和测量纠缠光子态的实验进展。在第二部分中,我们介绍了片上量子态在单光子不同自由度 (DoF) 中的表示。在第三部分中,我们介绍了集成参量光子对源(非纠缠光子对)。然后,在第 4 部分中,我们将重点介绍各种类型的光子纠缠态,包括纠缠双光子态和多光子纠缠态
议程•《筹码法》的背景和目标•建立团队,设计投资组合策略并制定严格的审查过程•执行功绩审查和申请人参与•范围划分和尺寸奖励•尽职调查,法律文件和裁决执行过程
理由:• 欧盟芯片法案涵盖电子和光子芯片。• Horizon 部分的研发项目成果已达到技术成熟度,具有工业意义。• 与微/纳米电子集成的分离是人为的。• 联合研发对于光子学和电子学的共同集成至关重要。• 联合研发更好地解决了晶圆级大规模生产挑战。
这是人类历史上规模最大的制造业。高度复杂的半导体供应链是周期性的和相互关联的,因此很难理清。在过去的几十年里,半导体供应链已经简单地分为三个主要生产步骤,专注于性能和能效创新,同时降低成本和缩小芯片尺寸。首先,工程师设计芯片并精心规划如何构建其电子电路。其次,通过光刻等工艺将芯片设计制造到洁净室中的硅晶片上,微小电路被一层层构建起来。最后,将制造好的芯片从晶片上切下来,封装在保护外壳中,并经过严格测试以确保功能,然后才能集成到电子设备中(参见 CSS 研究)。
Components: • Attract large-scale investments in advanced technologies such as leading-edge logic and memory • Incentivize expansion of manufacturing capacity for mature and other types of semiconductors