摘要:金属基药物,例如顺铂和金诺芬,分别用于治疗癌症和类风湿性关节炎。临床前和临床试验表明,金诺芬和其他金衍生化合物具有抗癌、抗炎、抗菌和抗寄生虫活性。与已知靶向 DNA 的铂类药物不同,金的靶点尚未得到很好的阐明。为了更好地了解金药物在哺乳动物细胞中的靶点和作用,我们在 K562 癌细胞中使用了靶向 CRISPR(ToxCRISPR)筛选来识别调节细胞对金敏感性的基因。我们合成了一种具有强效抗癌活性的新型手性金(I)化合物 JHK-21。最敏感的靶点包括参与线粒体载体、线粒体代谢和氧化磷酸化的蛋白质。进一步分析表明,JHK-21 诱导了线粒体内膜功能障碍,并以不同于金诺芬的方式调节了 ATP 结合盒亚家族成员 C (ABCC1) 的功能。表征金属药物在哺乳动物细胞中的治疗效果和毒性越来越受到关注,以指导未来的药物发现以及细胞和临床前/临床研究。
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
“系统,决策和控制研究”(SSDC)(SSDC)涵盖了新的发展和进步,以及最新技术的状态,在广泛感知到的系统,决策和控制的各个领域,毫无疑问,最新,并具有高质量。目的是涵盖与系统,决策,控制,复杂过程及相关领域有关的理论,应用和观点,以及工程,计算机科学,物理学,经济学,社会和生命科学以及背后的典范和方法论中所嵌入的。The series contains monographs, textbooks, lecture notes and edited volumes in systems, decision making and control spanning the areas of Cyber-Physical Systems, Autonomous Systems, Sensor Networks, Control Systems, Energy Systems, Automotive Systems, Biological Systems, Vehicular Networking and Connected Vehicles, Aerospace Systems, Automation, Manufacturing, Smart Grids, Nonlinear Systems, Power Systems, Robotics, Social Systems, Economic Systems and other.对贡献者和读者的特殊价值是简短的出版时间范围以及全球范围内的分布和曝光,可以使研究成果的广泛和快速传播。是简短的出版时间范围以及全球范围内的分布和曝光,可以使研究成果的广泛和快速传播。
高阶拓扑能带理论扩展了物质拓扑相的分类,涵盖了绝缘体[1-13]、半金属[13-18]和超导体[19-31]。它推广了拓扑相的体边界对应性,使得d维n阶拓扑相仅在其(d-n)维边界上具有受保护的特性,例如无带隙态或分数电荷。目前,已知有两种互补机制可产生高阶拓扑相(HOTP):(1)由于某些 Wannier 中心配置引起的角诱导填充异常[2, 5, 9, 32, 33],以及(2)边界局域质量域的存在[2, 3, 6 – 8, 34, 35]。这两种机制分别导致了角电荷的分数量子化和角处单个间隙态的存在。在一阶拓扑系统中,还存在保护每个边界上的多个状态的相。这发生在奇数维度的手性对称系统(十重分类中的 AIII 类[36 – 38])中。例如,在一维系统中,此类相由一个 Z 拓扑变量(称为绕组数 [ 39 , 40 ])来识别,它将哈密顿量的同伦类归类在第一个同伦群 π 1 [ U ( N )] 内,并对应于每个边界上简并零能态的数量。相反,应用于手性一维系统的 Wannier 中心方法仅根据电偶极矩(由 Wannier 中心的位置给出)是否量化为 0 或 e/ 2 产生 Z 2 分类。因此,从这个意义上说,Wannier 中心方法的范围相对于绕组数的范围较小;它将所有具有偶数绕组数的一维手性对称系统标记为平凡的。观察到 AIII 类 1D 系统具有比 Wannier 中心图提供的更完整的 Z 分类,这表明,类似地,AIII 类 HOTP 可能存在更完整的分类。例如,考虑堆叠 N 个拓扑四极子绝缘体 [1]。如果它们以手性对称方式耦合,则整个系统在每个角将具有 N 个零能态。然而,没有已知的拓扑四极子绝缘体 [2]。
探索由两个多环芳烃 (PAH) 单元组成的新型联芳烃是进一步开发具有独特性能的有机材料的重要策略。在本研究中,采用一种高效、通用的方法合成了具有两个苯并[rst]五芬 (BPP) 单元的 5,5′-联苯并[rst]五芬 (BBPP),并通过 X 射线晶体学明确阐明了其结构。BBPP 表现出轴手性,通过手性高效液相色谱法拆分 (M)- 和 (P)-对映体,并通过圆二色光谱法进行研究。根据密度泛函理论计算,这些对映体具有相对较高的异构化能垒,为 43.6 kcal mol − 1。单体 BPP 和二聚体 BBPP 用紫外可见吸收和荧光光谱、循环伏安法和飞秒瞬态吸收光谱进行表征。结果表明,BPP 和 BBPP 均从形式上暗的 S 1 电子态发出荧光,这是通过借用相邻的亮 S 2 态的 Herzberg-Teller 强度实现的。虽然 BPP 表现出相对较低的光致发光量子产率 (PLQY),但由于借用了更大的 S 2 强度,BBPP 表现出显著增强的 PLQY。此外,在不同极性溶剂中进行的光谱研究表明 BBPP 中存在对称性破坏电荷转移。这表明通过适当的分子设计,此类 𝝅 延伸的联芳烃具有很高的单重态裂变潜力。
完整作者列表: Maruyama, Jun;大阪工业技术研究所,环境技术研究部 Maruyama, Shohei;大阪工业技术研究所, Kashiwagi, Yukiyasu;大阪市立技术研究所, Watanabe, Mitsuru;大阪工业技术研究所,电子材料研究部 Shinagawa, Tsutomu;大阪工业技术研究所,电子材料研究部 Nagaoka, Toru;大阪工业技术研究所,材料科学与工程研究部 Tamai, Toshiyuki;大阪工业技术研究所,森之宫中心 Ryu, Naoya;熊本工业研究所,材料开发部 Matsuo, Koichi;广岛大学 Ohwada, Mao;东北大学,先进材料多学科研究中心 Chida, Koki;东北大学, Yoshii, Takeharu;东北大学,先进材料多学科研究中心 Nishihara, Hirotomo;东北大学先进材料多学科研究中心 Tani, Fumito;九州大学材料化学与工程研究所 Uyama, Hiroshi;大阪大学,
摘要 基于线性调频扩频(CSS)的无线通信在无线传感器网络(WSN)中得到了广泛的应用,这些传感器一般传输速率较慢,对数据速率的要求越来越高,然而由于CSS的传输速率较低,仍存在许多问题有待研究。本文介绍了一种基于线性调频的调制方法。与BOK(二进制正交键控)和DM(直接调制)方法不同,该调制技术是将多普勒频移植入线性调频信号中。该调制技术在单个脉冲内实现M进制调制。通过计算压缩脉冲峰值在脉冲持续时间内的位置,或通过在匹配滤波器中使用不同的参考线性调频信号来实现解调。
出生于核心偏离超新星的后期,中子星在实验室中难以繁殖的密度和温度的特殊条件下包含物质。近年来,中子星观察已开始在高密度模型的高密度制度中对强烈相互作用物质的本质产生新的见解。同时,手性有效场理论已发展为一个强大的框架,用于研究中等密度恒星中的中等密度制度中具有序列不确定性的核物质特性。在本文中,我们回顾了手性有效野外理论的最新发展,并将重点放在多体扰动理论上,作为计算有效的工具,用于计算热和密集核物质的性质。我们还证明了有效的现场理论如何在核理论预测,核实验和对国家核方程的观察性约束之间进行统计学上的比较。
抽象的拓扑孤立场(例如磁性和极性天空)被设想为革新微电子。这些配置已在具有全局反转对称性破坏的固态材料中稳定,该材料将磁性材料转化为称为dzyaloshinskii – Moriya Interaction(DMI)的矢量自旋交换(DMI),以及旋转手学选择和同型溶质词。这项工作报告了3D手性旋转纹理的实验证据,例如螺旋旋转和具有不同手性和拓扑电荷的天空矩阵,在无定形的Fe – Ge厚膜中稳定。这些结果表明,具有随机DMI的结构和化学无序的材料可以类似于具有SIMI磁性特性,力矩和状态的反转对称破碎系统。无序的系统与具有全球反转对称性的系统通过其退化的旋转心脏破裂的区别,可以在RE Manence时形成各向同性和各向异性拓扑纹理,同时在材料合成,伏特,伏特,应变和菌株操纵方面具有更大的灵活性。