背景和目标:通常用于键合的正畸粘合剂可以显着增强细菌生物膜。纳米颗粒具有强大的抗菌特性,而不会损害键强度。因此,本研究的目的是评估壳聚糖和TiO2 NP与正畸底漆对剪切键强度混合的影响。材料和方法:对于这项系统的综述和荟萃分析研究,搜索了Medline(PubMed和Ovid),Science和Scopus等国际数据库,直到2024年10月使用与研究目标相关的关键字。Stata/MP。V17软件用于分析数据。结果:本研究包括十二项体外研究,总样本量为684个人类前美磨牙。SBS得分的平均差异在1%至5%的Chitosan NPS组和对照组之间为-1.11 MPa(MD,-1.11 MPA; 95%CI,-2.27,0.04; P = 0.16)和5.08 MPA(MD,-5.08 MPA; -5.08 MPA; 95%CI; 95%CI,-7.80,-7.80,-7.80,-7.80,-7.80; p.55; p.55; p.55; p.55; p.55; p;比较了1%TiO2 NPS组和对照组之间的平均SBS差异(MD,-0.43 MPA; 95%CI,-0.99,0.12; P = 0.13)。
在论文的第一部分中,从食物废物中提取壳聚糖是使用绿色溶剂作为循环经济的可持续解决方案进行的。此外,通过使用Core-Shell Zno@Sno X颗粒开发纳米复合材料来增强壳聚糖的抗菌活性,这在食品包装应用中具有显着潜力。为了获得更大的抗菌功效和紫外线阻滞能力,壳聚糖被化学接枝,苯甲酮3(BP-3)是一种以其紫外线过滤特性而闻名的植物提取物。针对革兰氏阴性菌和革兰氏阳性细菌评估了所获得的壳聚糖BP-3涂层的抗菌活性,并且发现苯甲酮3上的羟基在苯甲酮3上在抗相菌效率中起着至关重要的作用。连续的辐射测试表明,涂层具有长期的紫外线阻滞作用。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月7日。 https://doi.org/10.1101/2025.02.07.636955 doi:Biorxiv Preprint
作为纳米加工的主要工艺,DUV 光刻通常需要在光刻胶配方、溶剂和显影剂中使用大量有毒化学品。在此背景下,提出了替代当前石油衍生光刻胶的化学品,以减少对环境的影响。壳聚糖是一种生物源光刻胶,通过用绿色溶剂(去离子 (DI) 水)替代,可实现不含有机溶剂和碱性显影剂的水基图案化工艺。本文介绍了使用壳聚糖基光刻胶进行图案化集成的最后一个分步过程。使用 CEA-Leti 的 300 毫米中试线规模的初步结果显示,图案分辨率低至 800 nm,同时等离子蚀刻转移到 Si 基板中。最后,通过生命周期分析 (LCA) 对基于壳聚糖光刻胶的整个工艺的环境影响进行了评估,并将其与传统的基于溶剂的工艺进行了比较。关键词:光刻、光刻胶、生物源、壳聚糖、水基、半导体、可持续性、LCA
这项研究旨在探索石墨烯和壳聚糖在水分分割和催化中的应用,重点关注它们的独特特性和协同作用。对文献进行了全面的综述,以研究其在光催化活性和环境修复中的作用。石墨烯以其高表面积和电导率而闻名,其能够通过与金属纳米颗粒通过掺杂和杂交来增强电荷分离和光收集的能力。同样,评估了壳聚糖的生物聚合性质和对过渡金属的强亲和力,以评估其在酶促和催化应用中的效用。结果表明,石墨烯的光催化性能可以通过掺杂和功能化可显着提高,而壳聚糖则证明在废水处理中有效,作为对催化剂的聚合物支持。该研究得出结论,石墨烯和壳聚糖的综合使用为推进可持续能源解决方案和环境技术提供了有希望的潜力。
相关 - Sumana Kumar抽象的微塑性污染已成为一个关键的环境问题,牙科通过基于塑料的材料,个人护理产品和不当的临床废物管理产生了重大贡献。壳聚糖是一种丰富的,可生物降解且高度吸附的生物聚合物,为减轻牙齿实践中的微塑性污染提供了有希望的解决方案。本综述探讨了壳聚糖作为微塑料的替代吸附剂的潜在潜在吸附剂,并强调了其通过静电相互作用和氢键结合电荷和极性微塑料的能力。在牙科废水处理中实施壳聚糖增强的过滤系统可以大大减少从牙科实践中释放微塑料的。此外,本文解决了与采用基于壳聚糖的技术有关的挑战,包括可扩展性和监管障碍。它强调了创新方法的需求,以改善牙科废物管理中的可持续性。关键字:微塑料,牙科,壳聚糖,环境污染,废物管理
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
在天然聚合物中,壳聚糖作为化疗药物的药物输送系统引起了人们的特别关注 (7)。壳聚糖源自几丁质的脱乙酰化过程,是一种用途广泛的氨基多糖聚合物,大量存在于节肢动物的外骨骼和真菌的细胞壁中。其独特的属性,包括高载药量、持续循环、多功能性、在肿瘤部位精确释放药物、减轻对健康细胞的毒性、良好的靶向能力、生物相容性、生物降解性、抗菌和抗肿瘤特性以及细胞膜通透性,使其成为一种有吸引力的选择 (8)。化学改性的壳聚糖衍生物已显示出令人鼓舞的结果,可有效输送治疗剂,同时减少副作用。此外,壳聚糖在肿瘤部位的积累可以增强对癌细胞的免疫反应,并阻止肿瘤的生长和扩散。因此,由于具有抗肿瘤和止血活性且毒性极小,壳聚糖被认为是一种安全且生物相容的生物医学应用工具。壳聚糖的活性氨基易于与功能团连接,增强了其作为生物聚合物的多功能性 (7)。
在过去几十年中,含丁质废物的利用已成为一项紧迫的任务。当前的工作旨在研究壳聚糖(主要几壳蛋白成分之一)用于制备磁性可分离的生物催化剂。合成了基于固定在Fe 3 O 4纳米颗粒上的葡萄糖氧化酶(GOX)的多组分生物催化剂,合成了用壳聚糖和三聚磷酸钠修饰的纳米颗粒。用1-乙基-3-(3-二甲基氨基丙基)碳化二酰亚胺盐酸(EDC)和N-羟基糖糖酰亚胺(NHS)预先激活GOX的羧基。傅立叶转换红外光谱和低温氮的物理吸附被证明成功地修饰了磁性可分离的支撑物,并用细壳聚糖层成功。还确认了在支撑表面上的目标官能团的存在。在D-葡萄糖对D-葡萄糖 - δ-乳酮的氧化反应中研究了生物催化剂的活性和稳定性。固定的生物催化剂的活性略低于天然酶的活性。然而,固定的酶可以通过外部磁体轻松地与反应混合物分离,并实际上重复使用而不会丧失活性。确定了提供最大活性和稳定性的生物催化剂成分的比率。已经表明,与天然酶相比,通过上述方法固定GOX会导致pH和温度的工作范围增加15-20%。合成的生物催化剂可用于产生葡萄糖酸并确定各种流体中D-葡萄糖的浓度。
自然化合物的治疗潜力由于研究人员的生物相容性提高和可持续的起源而引起了研究人员的兴趣。Chitosan对其治疗特性及其在食品和饮料领域的广泛应用引起了极大的关注。壳聚糖寡糖(COS)是壳聚糖的衍生物,通常表现出比其母体化合物更好的生物学特性,从而扩大了对其潜在益处的兴趣。壳聚糖具有多种生物学特性,包括抗菌,抗氧化剂和抗炎化合物。研究已经阐明了壳聚糖的特定化学特征,例如分子量和脱乙酰化程度,影响这些生物学活性。值得注意的是,较低的分子量和较高程度的脱乙酰化倾向于增强壳聚糖的生物学特性。因此,研究越来越集中于探索cos的潜力。对这些化合物的研究已在管理各种疾病中揭示了有希望的应用,包括代谢综合征,糖尿病(DM),高胆固醇血症和肥胖症。