摘要使用琼脂二聚体扩散方法研究了香料果皮与壳聚糖混合在抑制四种微生物的生长中,抑制四种微生物的生长,抑制四种微生物的生长。发现与壳聚糖混合的石榴果皮的粗提取物有效地抑制了所有测试过的微生物的生长。在另一项研究中,将黄瓜水果(SpeedMax品种)涂有1)壳聚糖,2)与壳聚糖混合的石榴果皮中的粗提取物,并与对照组(浸入水中)进行比较。黄瓜在7°C下储存,并每7天记录每7天的黄瓜的质量归因。通过测量黄瓜水果的体重减轻,成熟和变质来记录实验结果。发现与壳聚糖混合(CHI + PPE,2.59±0.01)混合的粗化石榴果皮提取物涂料对体重损失百分比没有显着影响,与壳聚糖(CHI,2.58±0.01)相比,但与对照组的涂层有显着差异(2.93±0.001)。然而,用粗化石榴果皮提取物与壳聚糖(CHI + PPE)混合的涂料黄瓜倾向于增加成熟的量比壳聚糖和对照组涂层的成熟量更大(p <0.05)。与对照组相比,仅壳壳涂层就无法延迟黄瓜水果的变质。然而,发现涂有粗化石榴果皮提取物与壳聚糖混合的黄瓜水果比用壳聚糖和对照涂层的壳聚糖更宠坏(p <0.05)。关键字:黄瓜,石榴果皮,壳聚糖,涂料
摘要:根据世界卫生组织的数据,2020 年,结直肠癌 (CRC) 导致全球男女老少约 935,173 人死亡。现有的抗癌疗法包括化疗、放疗和抗癌药物,但治疗效果有限、副作用大且成功率低。这促使人们出现了几种新型治疗剂作为 CRC 的潜在疗法,包括合成和天然材料。口服和靶向药物输送系统是 CRC 治疗的有吸引力的策略,因为它们可以最大限度地减少副作用,增强抗癌药物的疗效。然而,口服药物输送至今仍面临着药物溶解度差、稳定性差和渗透性差等挑战。由于纳米粒子能够控制包封剂的释放、药物靶向性并减少给药次数,因此最近开发了各种口服纳米方法和靶向药物输送系统。壳聚糖聚合物独特的物理化学性质有助于克服口服药物输送障碍并靶向结肠肿瘤细胞。基于壳聚糖的纳米载体通过增强几种抗结直肠癌药物的稳定性、靶向性和生物利用度提供了额外的改进。改性壳聚糖衍生物还通过加强对封装材料对胃肠道 (GIT) 酸性和酶降解的保护,促进了 CRC 靶向性。本综述旨在概述 CRC 病理学、治疗和口服药物输送的障碍。它还强调了纳米技术在口服药物靶向输送系统中的作用以及对壳聚糖及其衍生物日益增长的兴趣。本综述总结了迄今为止研究基于壳聚糖的纳米载体在 CRC 治疗中的潜在应用的相关工作。关键词:壳聚糖、结直肠癌、纳米载体、口服输送、药物靶向、纳米技术
执行摘要几丁质是真菌,植物和昆虫细胞壁的主要组成部分。壳聚糖是一种自然存在的多糖,通过甲壳质的去乙酰化获得。壳聚糖和几丁质 - 葡聚糖是允许的产品,可用于减少不良微生物,沉淀辅助物,抗氧化剂,抗氧化剂,铜和铁浓度的降低以及去除污染物。壳聚糖还可以控制不良酵母菌的生长,例如乳酸菌,乳酸菌,乳酸菌,卵球菌和pediocococcus以及乙酸乙酸等乙酸细菌的生长。壳聚糖对微生物的作用机理在酸性溶液中降低了其强阳离子电荷,并且该电荷与微生物细胞壁的阴离子成分结合,并在物理上剪切了细胞壁。这种离子相互作用杀死了微生物。几丁质的乙酰化度(DA)是影响生物学,物理化学和机械性能的重要参数,并且是确定其分类是否为壳蛋白还是壳聚糖的重要参数。Chitosan正在成为一种非常重要的原材料,用于综合用于食品,医疗,制药,医疗保健,农业,工业和环境污染保护的广泛产品。壳聚糖被用作制造葡萄酒,啤酒,苹果酒和烈酒的加工帮助。无论技术目的是什么,含壳聚糖的沉积物都可以从葡萄酒中除去,在治疗结束时必须通过物理分离过程(例如齿条,离心和/或过滤)进行治疗结束时的烈酒。由于壳聚糖在略有酸性至中性pH值以及水性和乙醇溶液中不溶于溶解,因此任何残留的壳聚糖不太可能保留在处理的产品中。高性能液相色谱分析已证实,最终产物没有壳聚糖。因此,从葡萄酒源中估计的壳聚糖的摄入量可以被认为可以忽略不计。的解决方案允许使用尼日尔曲霉和阿加里库斯·比斯波勒斯(Agaricus bisporus)作为罚款剂和污染物治疗的真菌壳聚糖(OIV/OENO 336A/2009; 337a/2009; 337a/2009; 338a/2009; 338a/2009; 338a/2009; 339a; 339a; 339a/2009; 6; oiv-11; oiv,2011年(OENO 336A/2009; 337A/2009; 337A/2009; 337a/2009; 337a/2009; 337a; 337a; 337a; 337a; 337a; 337a; 337a; 337a;还通过2009年7月的OIV大会的决定添加了一本针对真菌壳聚糖的专着,考虑到“ OEnological Products的专家规格”的作品(OIV/OENO 368/2009,附录7),但目前仅允许FSANZ使用Chiting A. A.作为OIV批准过程的一部分,他们确实评估了加工辅助工具的毒性和葡萄酒消费者的安全风险。在本应用中已发表并总结了许多关于贝类壳聚糖(和其他来源)安全性的动物,人类和体外研究。同样,在这种应用中,Chinova Bioworks证明了来自Agaricus Bisporus的类似壳聚糖与来自贝类和尼日尔A.的壳聚糖如何。此外,他们的产品Pinnacle Mycrobrio获得了GRAS身份,以用作酒精饮料制造的加工。在FSANZ应用程序A1077中,申请人展示了尼日尔曲霉与贝类壳聚糖的类似壳聚糖以及FSANZ对他们接受安全信息的所有数据的回顾,并且该数据适用于尼日尔壳聚糖,因为它与A. Niger a. Niger sake a. Niger sake a. Niger sake a. Niger sake a. Niger sake sake a. Niger sake a. niger sake a. niger a. niger Chitosan均适用于A. niger Chitosan。澳大利亚葡萄和葡萄酒以及新西兰葡萄酒生产商都支持此应用程序。
壳聚糖是由114批量的Mahtani壳聚糖提供的,其乙酰化度(DA)为2%,由1 H NMR确定,质量平均摩尔质量(m w)为619 kg/mol,分散剂(ð)的分散剂(1.6),由尺寸 - 1.6,通过尺寸 - 散发性切除率确定。壳聚糖以1、2-丙二醇和ACOH(50/50 V/V)的水醇混合物中的0.5%(w/v)以0.5%(w/v)的形式进行乙酰基壳。在剧烈的机械搅拌下将壳聚糖(GLCN)单位的静态藻类添加到D-葡萄糖(GLCN)单元中,并混合18小时以达到靶向DA。然后将壳溶液通过纤维素膜过滤,孔径从3 µm降低至0.45 µm。乙酰化的壳聚糖最终用NH 4 OH沉淀,用去离子水洗涤并冷冻干燥。乙酰化的壳聚糖,DA为35%,M W的693 kDa和1.8的分散性。
在这项研究中,合成了氧化物 /壳聚糖复合材料的Fe 3 O 4 /氧化二壳含量,以降解亚甲基蓝色染料。使用XRD,SEM-EDS,VSM和UV-VIS DRS Instruments对合成产品进行表征。使用共沉淀方法合成的Fe 3 O 4 /氧化石墨烯 /壳聚糖复合材料导致具有磁性特性的深褐色粉末。XRD表征在2θ= 35,49°时显示衍射峰,晶体尺寸为23,29 nm。SEM-EDS表征显示骨料形态和C(83,20%),O(11,70%),Na(1,00%),N(0,70%)和Fe(2,50%)。VSM表征显示磁化值为25,39 EMU/g。UV-VIS DRS表征表明Fe 3 O 4 /氧化石墨烯 /壳聚糖的带隙值为1,40 eV。
在论文的第一部分中,从食物废物中提取壳聚糖是使用绿色溶剂作为循环经济的可持续解决方案进行的。此外,通过使用Core-Shell Zno@Sno X颗粒开发纳米复合材料来增强壳聚糖的抗菌活性,这在食品包装应用中具有显着潜力。为了获得更大的抗菌功效和紫外线阻滞能力,壳聚糖被化学接枝,苯甲酮3(BP-3)是一种以其紫外线过滤特性而闻名的植物提取物。针对革兰氏阴性菌和革兰氏阳性细菌评估了所获得的壳聚糖BP-3涂层的抗菌活性,并且发现苯甲酮3上的羟基在苯甲酮3上在抗相菌效率中起着至关重要的作用。连续的辐射测试表明,涂层具有长期的紫外线阻滞作用。
然而,HAp 最重要的特性是以白色粉末的形式存在。因此,在吸附重金属离子后从溶液中分离悬浮的细小固体是一项艰巨的任务 [25],因此,用聚合物结合 HAp 可以解决这个问题。自然界中有很多聚合物可用作 HAP 的结合材料。研究了羟基磷灰石 - 壳聚糖 (HAp-C) 复合材料从水溶液中去除铅、钴和镍等重金属 [25-27]。由于壳聚糖在自然界中可得,并且具有亲水性、生物降解性、无毒、生物相容性、吸附性能等特殊特性,以及壳聚糖中存在的氨基和羟基可作为吸附的活性位点,因此选择壳聚糖作为 HAP 的结合材料 [26,27]。
银纳米颗粒溶液是通过用硼氢化钠的化学还原硝酸银(AgNO3)的化学还原制备的,并添加了壳聚糖作为稳定剂,如Dos Santos等人所述。2014(17).1.0 g的壳聚糖溶解在200 mL的2%乙酸(v/v)中;将溶液搅拌过夜,并在真空下过滤。接下来,将4.0 mL硝酸银(0.012 mol L -1)添加到60 mL的壳聚糖溶液中30分钟前30分钟加入硼氢化钠。在末端添加氟化钠(NAF)并提高了溶液的稳定性。准备的溶液具有AG+ [376.5 mg/ ml]和氟化钠[5028.3mg/ ml]。使用透射电子显微镜(TEM)和UV-VIS光谱证实了银纳米颗粒的大小和形状。
相关 - Sumana Kumar抽象的微塑性污染已成为一个关键的环境问题,牙科通过基于塑料的材料,个人护理产品和不当的临床废物管理产生了重大贡献。壳聚糖是一种丰富的,可生物降解且高度吸附的生物聚合物,为减轻牙齿实践中的微塑性污染提供了有希望的解决方案。本综述探讨了壳聚糖作为微塑料的替代吸附剂的潜在潜在吸附剂,并强调了其通过静电相互作用和氢键结合电荷和极性微塑料的能力。在牙科废水处理中实施壳聚糖增强的过滤系统可以大大减少从牙科实践中释放微塑料的。此外,本文解决了与采用基于壳聚糖的技术有关的挑战,包括可扩展性和监管障碍。它强调了创新方法的需求,以改善牙科废物管理中的可持续性。关键字:微塑料,牙科,壳聚糖,环境污染,废物管理
配制干粉吸入器 (DPI) 时需要具有某些特性的合适赋形剂,以将抗结核 (TB) 药物输送到肺部并在肺部和肺泡巨噬细胞中提供足够的药物浓度,以克服活动性和潜伏性结核感染。本研究旨在探索壳聚糖和海藻酸盐的组合在配制利福平 DPI 中的作用。使用不同组合的壳聚糖和海藻酸盐通过喷雾干燥制备利福平 DPI。对所得利福平干粉的粒度分布、形态、水分含量、药物含量和包封率进行了表征。除了在 pH 7.4 的磷酸盐缓冲液(含 0.05% 十二烷基硫酸钠)和 pH 4.5 的邻苯二甲酸酯缓冲液中的溶解研究外,还进行了对细胞系 A549 的细胞毒性研究。 DPI F3(RIF-Ch-Alg 2:1:1)中壳聚糖和海藻酸盐的组合在模拟肺液(2 小时内 78.301% ± 1.332%)和模拟巨噬细胞液(2 小时内 41.355% ± 1.259%)中均提供了利福平 DPI 的合适药物释放曲线。DPI F3 还具有 11.4288 ± 1.259 µm 的空气动力学粒径,并且在浓度高达 0.1 mg/ml 时也被认为对肺上皮细胞(活力 89.73%)是安全的。总之,壳聚糖和海藻酸盐的组合是一种有前途的载体,可用于开发具有适合结核病治疗特性的干粉吸入器。