醇/壳聚糖复合纳米纤维与银纳米粒子和卢立康唑包裹的聚乳酸-乙醇酸纳米粒子共同负载用于治疗糖尿病足部溃疡。”国际生物大分子杂志 (2023):128978。https://doi.org/10.1016/j.ijbiomac.2023.128978
淀粉,纤维素,壳聚糖和蒙脱石(MMT)6,7已被广泛用于食品包装材料中,因为它们证明了水和气体抗性,机械强度和热性能的增强。8但是,应注意的是,这也取决于使用它们的浓度。此外,纳米材料还增强了包装材料的性能,包括耐用性,exmbiblity,Exmapitions,屏障性质和光学性质。9例如,发现一些纳米结构,例如纤维素纳米晶(CNC)和纤维素纳米ber(CNF),可大大改善壳聚糖和乳清蛋白孤立的壳聚糖强度和水蒸气渗透性。9,10此外,纳米材料被广泛用作抗菌剂来减少包装食品的微生物变质。从这个意义上讲,包括铜纳米颗粒和银纳米颗粒在内的纳米颗粒分别改善了抗抗原性能,热性能和抗氧化活性,分别添加到基于琼脂的lms和CNC中时。11,12
摘要:本研究旨在配制具有粘膜粘附性的载万古霉素硫醇化壳聚糖 (TCS) 纳米粒子。这些纳米粒子具有粘膜粘附性,可增强药物在眼部位置的保留。为此,通过离子凝胶法制备了载 TCS 的万古霉素纳米粒子,并对其大小、形状、多分散性指数、粘膜粘附性、细胞摄取和抗炎活性进行了表征。合成的纳米粒子的平均尺寸为 288 nm,具有正的 zeta 电位。此外,使用此方法成功将 85% 的万古霉素封装在 TCS 纳米粒子中。与非硫醇化万古霉素制剂相比,粘膜粘附性增加了 2 倍(p < 0.05)。与非硫醇化壳聚糖纳米粒子和单独的万古霉素相比,载有万古霉素的 TCS 的抑制区也显著改善。通过组织病理学进行的体内抗炎评估导致眼部愈合。根据结果,推断 TCS 纳米粒子是一种有前途的万古霉素眼部给药载体系统。
过去,使用了各种方法来治愈皮肤伤口,其中许多方法没有有利的结果。用基于水凝胶化合物的敷料代替旧方法已导致伤口愈合的质量和速度提高。已知水凝胶在改善气体交换和氧气供应中的作用以及伤口分泌物的吸收和温度调节以及伤口上传染剂的降低。在这项研究中,我们试图引入有效治愈皮肤伤口的最重要的水凝胶基团。调查结果表明,这些化合物包括具有天然碱(纤维素,淀粉,几丁质,壳聚糖,角叉菜胶,藻酸盐,葡萄糖,葡萄糖,葡萄糖,pullulan等)的聚合物水凝胶。),用物理碱产生的水凝胶。和化学(共聚物,均聚物等)),与自然和合成碱(与壳聚糖,胶原蛋白和葡萄糖起源的复合物相结合),具有聚乙烯醇等化合物等)和高级水凝胶(自愈合,喷涂,智能等)
摘要Carya Cathayensis Sarg。在中国广泛种植作为一种专门的坚果作物,其废弃的果壳(外果皮)富含具有已知抗菌特性的三萜类化合物。在这项研究中,从Carya Cathayensis Sarg中提取三萜。果壳(CCSHS)使用表面活性剂介导的超声辅助提取方法通过响应表面方法进行了优化,优化的提取产率为33.92±0.52 mg UAE/g DW。AB-8大孔树脂用于从粗提取物中净化三萜类化合物,从而达到4.3倍的纯度。介孔壳聚糖气凝胶,并使用显微镜和氮吸附方法评估其形态,孔径和特定的表面积。然后使用这些气凝胶吸附从CCSH提取物中纯化的三萜类化合物,从而增强其抗菌作用。大肠杆菌和金黄色葡萄球菌的生长曲线表明,CCSHS衍生的三萜和壳聚糖气囊球的组合导致抗菌作用增强。本研究为增加CCSH的价值奠定了基础,同时提供开发植物性抗菌产品的途径。
*相应的作者在:Coimbra大学药学系科伊布拉大学药学系,葡萄牙Coimbra大学,葡萄牙(F. Veiga)(F. Veiga),Requin/Laqv,药物技术小组,Coimbra University of Coimbra University of Coimbra University of Coimbra,Coimbra,Coimbra,paruga,paruga,A。c。电子邮件地址:fveiga@ci.uc.pt(F。Veiga),acsantos@ff.uc.pt(A.C。Paiva-Santos)。
近年来,能够引导细胞行为和形态的聚合物涂层引起了越来越多的关注。已知涂层特性(包括表面形态、表面结构和化学性质)会显著影响细胞粘附、定向、引导、分化、增殖和基因表达。[1–4] 此类涂层在生物传感器、生物芯片、药物输送装置、假体和植入物中也得到了有效应用。可以使用多种合成和天然来源的生物相容性聚合物。尽管合成聚合物在加工、稳定性和机械性能方面具有优势,但天然聚合物由于其生物活性、生物降解性和生物相容性而在许多应用中更受青睐。 [5– 6 ] 在天然聚合物中,壳聚糖是一种从几丁质中提取的线性多糖,由于其无毒、[7]可生物降解、[8]抗菌活性、[9]生物相容性[10]和免疫活性[11]等显著特性,已广泛应用于生物医学、环境和食品应用。此外,由于壳聚糖的可加工性,它可以设计成各种结构,包括薄膜、[12]膜、[13]微/纳米纤维、[14]绷带、[15]微/纳米颗粒[16]和水凝胶。[17]
欧洲绿色协议旨在减少农药的使用,特别是开发生物防治产品以保护农作物免受疾病的影响。的确,使用显着量的化学物质对环境产生负面影响,例如土壤微生物生物多样性或地下水质量以及人类健康。葡萄藤(Vitis Vinifera)被选为第一个目标作物之一,因为其经济重要性及其对杀菌剂的依赖,以控制全球主要的破坏性疾病:灰色霉菌,柔软和白粉病。壳聚糖是一种从甲壳类外骨骼中提取的生物聚合物,在包括葡萄藤在内的许多植物物种中已被用作生物防治剂,以针对多种隐脂性疾病,例如唐尼霉菌(plasmopara viticola),粉状降落(elysiphe necator)和灰色霉菌(bilyea)和灰色霉菌(Brighodis)(byeaea)。但是,其作用方式的确切分子机制尚不清楚:它是直接的生物农药效应还是间接启发活性,还是两者兼而有之?在这项研究中,我们研究了六个具有不同程度的聚合(DP)(DP)的壳聚糖,范围从低到高DP(12、25、33、44、100和470)。我们通过评估其抗真菌特性及其诱导葡萄藤免疫反应的能力来仔细检查其生物学活性。为了研究其启发性活性,我们分析了它们诱导MAPK磷酸化的能力,防御基因的激活和葡萄藤中代谢物变化的能力。我们的结果表明,DP较低的壳聚糖在诱导葡萄的防御能力方面更有效,并且具有针对灰果芽孢杆菌和viticola的最强生物农药作用。我们用DP12将壳聚糖识别为最有效的抗性诱导剂。然后,在过去三年中进行的葡萄园试验中,壳聚糖DP12已针对柔软和白粉病进行了测试。获得的结果表明,当病原体接种量很低时,基于壳聚糖的生物防治产物可能会有效地有效,并且只能与两个
不适当和过度使用化学物质会对一种健康产生几种负面影响。因此,对害虫控制替代措施的研究是紧迫而必要的。此外,联合国2030年议程强调了实现粮食安全和促进可持续农业的目标。因此,使用生物控制是非常必要的。在这种情况下,使用真菌的微生物控制突出。一些特定的真菌是线虫的天然敌人,因为真菌消耗了线虫。这些食肉真菌被称为黑凝真菌(NF)。nf几乎存在于真菌王国的几乎所有分类群中,可以分为五个群体:线虫捕获/捕食者,机会主义或卵巢群,内寄生虫,产生毒素的真菌,以及特殊攻击设备的生产者(Soares等人,2018年)。这些微生物具有生物技术利益,超出了生物控制。此外,突出了这些酶和纳米颗粒的产生,这些酶和纳米颗粒的生产得到了强调,这些生物被强调了核苷酸活性(Barbosa等,2019; Soares等,2023)。因此,在这个研究主题中,Al-Ani等人。回顾了NF在生物技术和可持续农业中的作用。根据影响线虫的机制,他们将NF分为两种类型:直接(载植物,内寄生虫,囊肿或产生毒素的卵寄生虫,以及特殊攻击装置的生产者)或非导向效应(瘫痪的毒素,影响Nematodes的生命周期)。这种机会性真菌具有在壳聚糖作为其唯一营养来源的能力。此外,作者讨论了NF关于NF对环境的适应及其对线虫的作用的一些分子机制。是最突出的NF产品之一,并且在控制感兴趣的植物寄生线虫的研究中是Pochonia chlamydosporia。壳聚糖是由几丁质的N-二乙基形式产生的多糖。此外,它在控制植物有害生物和疾病方面有效。在这个研究主题中,Lopez-Nuñes等。讨论了白疟原虫在植物上执行的有益内生作用,以及壳聚糖和黑凝真菌的联合使用如何成为对线虫和其他根病原体生物学控制的新型策略。
以提高代谢稳定性和实时监测药物位置。基于多糖的纳米前药由于其成分清晰、结构准确、载药量稳定、抗肿瘤活性高而受到广泛关注。14,15壳聚糖(CS)是一种天然无毒的高分子材料,具有良好的生物降解性和生物相容性,被广泛应用于抗肿瘤药物的递送,用于癌症的诊断和治疗。16,17此外,CS具有大量的氨基(-NH 2)和羟基(-OH),是极好的功能化修饰位点。18如果将疏水性抗癌药物通过共价键直接偶联到亲水性聚合物链上,可以大大防止药物过早释放。然而,以壳聚糖为基础形成的阳离子纳米粒子不仅缺乏肿瘤靶向作用,而且易受血清蛋白介导的聚集和消除。19 透明质酸具有天然电负性,可用于包覆阳离子基纳米粒子。同时,透明质酸由于其低免疫原性,高生物相容性以及靶向肿瘤特异性表达受体(簇决定簇44,CD44)而被用于药物递送系统。20 因此,HA功能化的药物递送系统可以主动靶向癌细胞。21,22