本研究制备了一些偶氮苯酚氯化化合物,并根据 ASTM (美国材料试验协会) 研究了它们作为商用聚氨酯阻燃剂的性能,其中使用的比例与偶氮苯酚氯化化合物不同。通过增加氯原子,将偶氮苯酚氯化化合物开发为阻燃材料。制备了具有不同数量和取代氯原子位置的偶氮苯酚氯化化合物。傅里叶变换红外光谱 (FT-IR) 预测了偶氮苯酚氯化化合物的化学结构。此外,通过增加氯原子的数量和增加所添加的偶氮苯酚氯化化合物的比例,样品作为阻燃剂的效率提高。
方法和分析:遵守系统审查和荟萃分析协议(PRISMA-P)指南的首选报告项目,该协议概述了我们的系统评价和荟萃分析的方法。这项研究开始于2023年6月至2023年8月在PubMed进行的广泛搜索,随后在其他三个关键数据库中进行了搜索:Embase,Web of Science和Scopus,2023年9月。系统搜索将涵盖所有可用的出版物,而无需应用任何出版日期过滤器。文献搜索中的记录将上传到系统的审查软件的共同版本,以促进重复数据删除,盲目筛选和选择合格的研究。两名独立的审稿人将严格筛选记录,提取数据并执行偏见评估的风险,并通过第三个研究人员解决冲突。结果将在摘要表中进行叙述,并具有荟萃分析取决于发现的可能性,重点是医疗环境中成年患者的每日氯氏菌沐浴的有效性和不良事件。此外,我们将通过量化其效应大小来研究某些风险因素是否会影响结果。
苯肾上腺素通过作用于鼻粘膜小动脉中的α1-肾上腺素受体而降低鼻充血,从而产生收缩。这导致水肿减少和鼻腔腔的排水增加。在过敏反应中,过敏原与肥大细胞和嗜碱性粒细胞上的抗体相互作用并交联表面Ig e抗体。一旦形成了肥大细胞抗体 - 抗原复合物,就会发生一系列复杂的事件,最终导致细胞降解,并从肥大细胞或嗜碱性碱中释放组胺(和其他化学介质)。一旦释放,组胺可以通过组胺受体与局部或广泛的组织反应。组胺作用于H 1-受体,产生瘙痒,血管舒张,低血压,冲洗,头痛,心痛,心动过速和支气管收缩。组胺还会增加血管渗透性并增强疼痛。氯苯胺恶粒与组胺H 1受体结合。这阻断了内源性组胺的作用,后来导致组胺带来的负面症状暂时缓解。
可充电铝电池(RABS)使用刘易斯酸性铝氯化物(ALCL 3)和1-乙基-3-甲基咪唑烷氯化物(EMIMCL)离子液体电解质。电极制造通常依赖于锂离子电池(LIB)的程序,包括使用聚乙烯二氟化物(PVDF)作为粘合剂。但是,PVDF在RAB电解质中与Al 2 Cl 7-反应,使其不适合新电池类型。文献缺乏有关形成的产品的细节,离子液体电解质的变化以及对电化学性能的影响。在2025年对欧洲化学机构对人类和聚氟烷基物质(PFA)的限制(PFAS)限制为替代性粘合剂。与ALCL 3:EMIMCL(1.50:1.00)电解质,PVDF和PVDC分别在脱氢液化和脱氢氯化过程中转化为无定形碳,如Raman光谱所证实的。此外,通过19 F-NMR,可以证明浸泡聚合物和离子液体之间的反应时间对新形成的新形成的铝氯化铝合症复合物具有显着影响。基于石墨的电极的电化学测试表明,与PVDC相比,PVDF的特定能力增加,并连续数量的周期数。无定形碳可以防止石墨瓦解并增强电导率。此外,新形成的ALF 4-可以运行共同介入并导致特定能力的增加。©2024作者。由IOP Publishing Limited代表电化学学会出版。[doi:10.1149/1945-7111/ad8a93]这是根据Creative Commons Attribution 4.0许可(CC by,https://creativecommons.org/licenses/by/4.0/)分发的开放访问文章,如果原始作品被适当地引用了任何媒介,则可以在任何媒介中不受限制地重复使用工作。
暴露于高浓度 NaCl 的绿豆植株的生长、产量、生理参数、叶绿素含量、离子吸收(Na + 较少和 K + 离子较多)和养分含量均有所变化,冬季作物比夏季作物表现出更高的敏感性。然而,引入 B. pseudomycoides 产生了明显的缓解效果,这反映在植物生长、产量属性、生理参数、离子吸收和养分含量的改善上。研究结果强调了绿豆冬季和夏季作物对 NaCl 胁迫的不同反应,并强调了耐盐细菌作为减少盐分引起损害的可持续解决方案的潜力。这项研究为制定能够减轻盐分胁迫对不同季节绿豆作物的不利影响的弹性农业实践提供了宝贵的见解,从而提高了易受土壤盐渍化影响地区的粮食安全。
摘要。小球藻已被广泛用于生物能源,环境保护,还原,食物,药物和其他领域。在本文中,近年来通过文献综述对小球藻的优化进行了全面分析。结果表明,在5500-7000LUX的光强度范围内,小球藻的生物量积累速率更快,但是小球藻的生长速率在极高的光强度范围内达到了限制的10000-14000LUX蓝色和绿光,对生物量和光合色素颜料的效应最大,对氯菌的积累;蓝色和绿光单色光培养模式的脂质产量最高。在蓝白色的光中添加绿光,红白色的浅色和白色绿色的光对小球藻的脂质积累有益。在24小时培养模式下,14L:10D的低频光周期通常是最佳方案。根据上述结论,光条件,复合光对小球藻的影响和最佳的低频光周期将是未来大型小球藻大规模培养的主要研究方向。
二氧化氯已用于饮用水处理,以控制味道和气味并去除铁和锰。对于细菌和病毒的控制,二氧化氯与游离氯一样有效甚至更好。二氧化氯是一种有效的饮用水消毒剂,目前估计美国有 300 到 400 家公用事业公司拥有二氧化氯处理设备。本文介绍了二氧化氯的产生方法、杀菌效果、现场应用以及使用二氧化氯对饮用水进行消毒的问题。17. 关键词和文献分析 a. 描述符 b. 标识符/开放式术语 c. COSATI 领域/组
抗组胺药是药物,通过刺激H1受体中的组胺作用作用,从而拮抗大多数平滑肌肉,以减轻或防止疾病,恶心,呕吐和头晕的疾病,恶心,恶心,呕吐和头晕。此外,由于抗组胺药可能会导致嗜睡作为副作用,因此其中一些可能被用作失眠的对手。某些抗组胺药用于处理神经和情绪状况,以帮助控制焦虑并在手术前放松患者。[1]新抗组胺药的镇静行为较少导致更高的剂量,这可能通过增加血管渗透性来导致哮喘治疗。[2–6]氯苯甲胺,组胺H1受体拮抗剂已被证明可以反向恶性疟原虫[7]逆转氯喹的耐药性[7],建议用于流鼻涕和季节性过敏。尽管甲米宁氨酸和左旋替代氨酸都是重要的第二代抗组胺药,但他们的研究表明,种族酸的抗组胺药活性主要归因于左旋乙醇。[8]氯苯胺恶心(cpm),(r/s)-3-(4-氯苯基)-n,n-二甲基-3-(pyridin-2- yl)丙酸2-氯酸2-氯吡啶(图。1)[9]是第一代烷基胺抗组胺药,通过拮抗H1受体来起作用。它通常用于药物制剂中,以症状缓解具有轻度镇静特性的普通感冒和过敏性鼻炎。[10]通常将其作为片剂,注射和糖浆作为单个成分制剂,是其他配方中流行的成分之一,例如咳嗽疗法和乳霜。已经报道了许多基于HPLC和HPTLC的方法[11-16]和NMR光谱法,[17]光学方法,[18]电动色谱法,[19],用于单独估计这些药物以及与药物剂型形式的其他药物结合。,但尚无据报道使用HPLC在散装药物和药物剂型中同时估算这两种药物的方法。因此,目前的工作针对新开发的合成,并验证一种新的HPLC方法,用于估计药物剂型中CPM
尽管本文提出的信息和建议是真诚提出的,但伊士曼化学公司(“伊士曼”)及其子公司对其完整性或准确性不做任何陈述或保证。,您必须自己确定其适合自己的适合性和完整性,保护环境以及产品的健康和安全性。本文中没有任何内容应被解释为使用任何专利的任何产品,过程,设备或配方的建议,并且我们不对其使用不侵犯任何专利的陈述或保证,明确或暗示。没有明示或暗示的适销性,适合特定目的或任何其他性质的陈述或任何其他性质,或者在此处以信息所指的信息或本文所涉及的产品的范围进行,而没有任何东西可以放弃任何卖方的销售条件。
在染料敏化的太阳能电池(DSSC)中,光被敏化的染料吸收。当光撞击染料分子时,它会吸收光子并将其兴奋至更高的能量状态。这种激发态允许染料分子将电子注入半导体的传导带,从而产生电流。选择染料特性非常重要,因为它可以帮助提高DSSC的性能。然而,从相同批次用作染料的植物或水果的相同输出电流特性非常困难。此外,改善了制造染料敏化的太阳能电池的电性能,例如短路电流密度和效率,这是至关重要的,因为需要考虑许多实验因素。因此,要最大程度地减少材料资源的额外利用,这是由于制造不成功的风险并理想地获得更好的性能,进行基于模拟的研究对于优化DSSC的性能很重要。自由软件通用光伏设备模型(GPVDM)是一个有前途且有趣的工具,因为它的免费许可和通过图形接口易于访问,用于模拟光电设备,包括OLED,OFET和各种类型的太阳能电池。本文考虑了3-D光伏设备模型GPVDM,以模拟用不同的叶绿素染料样品以DSSC性能模拟所提出的结构。本文旨在表征基于叶绿素的DSSC的高电流密度 - 电压(J-V),并确定合适的光伏仿真软件,用于运行基于叶绿素的DSSC的模拟。最后,将结果与各种文献来源中报道的实验数据进行了比较。结果表明,对于虫丝豆糖叶(CHL E),增强的短路电流密度(JSC)为0.3556 mA cm -2,这是所测试的其他染料中最高的。模拟短路电流密度(JSC)的值与已发表论文中报道的JSC的实验结果略有不同。总而言之,GPVDM可被认为适用于建模DSSC。
