圆桌会议通过对过去五年来英格兰胆固醇管理进展的学术出版物、指导、政策和报告的全面文献回顾,为圆桌会议期间的讨论提供了参考。本次回顾确定了政策目标、国家方向和卫生系统影响变革的能力之间的核心差距。会议前,与会者收到了这些调查结果的摘要,会议采用互动研讨会的方式,以促进对主要障碍和机会的深入评估,并审查当前背景背后的驱动因素和确保未来进步的责任,特别是针对高危人群。Darzi 评论在圆桌会议结束后的几周内发表,并因其对该主题的重要性而被本报告引用。
异常胆固醇代谢已成为癌症治疗中流行的治疗靶点。近年来,人们对皂苷的抗肿瘤活性的兴趣激增,尤其是它们破坏肿瘤细胞中胆固醇稳态的能力。皂苷调节胆固醇是一个复杂的过程,涉及多种机制。但是,现在有一个显着的全面评论,可以通过胆固醇调节来解决其抗肿瘤作用。本综述将探讨皂苷调节胆固醇的复杂机制,包括调节合成,代谢和摄取,以及与胆固醇的复杂形成。还将概述皂苷如何通过胆固醇调节,增强细胞毒性,抑制肿瘤细胞转移,逆转耐药性,诱导免疫毒素大分子逃脱和屈服。这种全面的分析提供了有关使用皂苷抗肿瘤疗法及其与其他药物的结合的潜力的见解,从而促进了对它们对癌细胞影响的理解。
覆盖初级纤毛的质膜上积聚了多种受体和通道。为确保纤毛的传感功能,纤毛膜的胆固醇含量高于其他细胞膜区域。过氧化物酶体生物发生障碍 Zellweger 综合征以多囊肾为特征,与细胞中纤毛胆固醇水平降低有关。然而,纤毛胆固醇降低导致多囊肾病的病因机制仍不清楚。在这里,我们证明通过药物治疗或过氧化物酶体的基因耗竭降低纤毛胆固醇会损害纤毛离子通道多囊蛋白-2 的定位。我们还生成了培养的肾髓质细胞和携带在常染色体显性多囊肾病患者数据库中检测到的多囊蛋白-2 胆固醇结合位点错义变体的小鼠。这种错义蛋白显示正常通道活性,但定位到纤毛膜的频率降低。纯合小鼠表现出胚胎致死和内脏反位和多囊肾的纤毛病谱。我们的研究结果表明胆固醇控制多囊蛋白-2的纤毛定位以预防多囊肾病。
摘要:RETT综合征(RTT)是一种罕见的神经发育障碍,由X连锁基因甲基-CPG结合蛋白2(MECP2)突变引起,这是一种泛表达的转录调节剂。rtt导致智力低下和发育回归影响10,000名女性中的大约1个。目前,RTT没有治疗方法。因此,为患有RTT的儿童开发新的治疗方法至关重要。几项研究表明,RTT与胆固醇稳态中的缺陷有关,但首次通过调节该途径进行治疗评估。此外,基于AAV的CYP46A1过表达(参与胆固醇途径的酶)已被证明在几种神经退行性疾病中有效。基于这些数据,我们坚信CYP46A1可能是RTT的相关治疗靶标。在此,我们评估了静脉内AAVPHP.EB-HCYP46A1-HA在男性和雌性MECP2缺乏小鼠中的影响。应用的AAVPHP.EB-HCYP46A1转导了中枢神经系统(CNS)的基本神经元。CYP46A1的过表达减轻了男性和雌性MECP2敲除小鼠的行为改变,并延长了MECP2缺陷型雄性的寿命。与胆固醇途径相关的几个参数得到了改善,并且在处理的小鼠中证明了线粒体活性的校正,该小鼠通过神经保护作用强调了CYP46A1的明显治疗益处。IV递送AAVPHP.EB-CYP46A1的耐受性良好,在处理的小鼠的中枢神经系统中未观察到炎症。IV递送AAVPHP.EB-CYP46A1的耐受性良好,在处理的小鼠的中枢神经系统中未观察到炎症。总的来说,我们的结果强烈表明CYP46A1是一个相关的靶标,过表达可以减轻RETT患者的表型。
摘要:高密度脂蛋白 (HDL) 胆固醇传统上被视为预防心血管疾病 (CVD) 的物质。然而,新证据表明,功能失调的 HDL 以胆固醇逆向转运 (RCT) 受损、抗炎和抗氧化活性降低以及内皮功能障碍增加为特征,这可能导致冠状动脉疾病 (CAD)。功能失调的 HDL 是由载脂蛋白 A-1 (Apo A-1) 的氧化修饰和酶失活引起的,无法有效清除外周组织中的胆固醇,并可能促进炎症和动脉粥样硬化。影响 HDL 代谢的基因突变进一步使其在心血管健康中的作用复杂化。研究表明,旨在提高 HDL-C 水平的传统疗法不一定能减少心血管事件,这凸显了改善 HDL 功能的新方法的必要性。正在探索治疗策略,例如 Apo A-1 模拟肽、重组 HDL 输注和针对特定 HDL 代谢途径的药物。此外,减肥、他汀类药物治疗和烟酸已显示出增强 HDL 功能的潜力。功能失调的 HDL 的病理生理学涉及复杂的机制,包括氧化应激、炎症和基因突变,这些机制会改变其结构和功能,从而削弱其心脏保护作用。新的功能检测,如胆固醇流出能力 (CEC) 和 HDL 炎症指数,通过评估 HDL 质量而不是数量,可以更准确地预测心血管风险。随着研究的进展,重点转向增强 HDL 功能并解决其功能障碍根本原因的治疗策略,从而为降低心血管风险和预防 CAD 提供更有效的方法。
Microglia States are Susceptible to Senescence and Cholesterol Dysregulation in Alzheimer's Disease Boyang Li1, Shaowei Wang1, Bilal Kerman1, Cristelle Hugo1, E Keats Shwab2, 3,4, Chang Shu5, Ornit Chiba-Falek 2, 3,4, Zoe Arvanitakis6, and Hussein Yassine1,7 1南加州大学凯克医学院神经病学系,洛杉矶,北卡罗来纳州杜克大学医学中心神经病学系2分司,美国北卡罗来纳州27710,美国。3美国杜克大学医学中心神经病学系,美国27710,美国。 4基因组和计算生物学中心,杜克大学医学中心,北卡罗来纳州达勒姆,27708,美国。 5遗传流行病学中心,人口与公共卫生科学系,凯克医学院,南加州大学,洛杉矶大学6 RUSH阿尔茨海默氏病中心,拉什大学医学中心,伊利诺伊州芝加哥,伊利诺伊州芝加哥,美国7号,个性化大脑健康中心,南加州大学,洛杉矶,洛杉矶2250年,卢斯2250 caazar cazar stree hyassine@usc.edu作者宣布,不存在资金的利益冲突3美国杜克大学医学中心神经病学系,美国27710,美国。4基因组和计算生物学中心,杜克大学医学中心,北卡罗来纳州达勒姆,27708,美国。5遗传流行病学中心,人口与公共卫生科学系,凯克医学院,南加州大学,洛杉矶大学6 RUSH阿尔茨海默氏病中心,拉什大学医学中心,伊利诺伊州芝加哥,伊利诺伊州芝加哥,美国7号,个性化大脑健康中心,南加州大学,洛杉矶,洛杉矶2250年,卢斯2250 caazar cazar stree hyassine@usc.edu作者宣布,不存在资金的利益冲突
在研究过程中,在四个不同的时间点,您将连续佩戴卧床血压监测装置或ABPM约25小时。这意味着在25小时内,您将戴上手臂袖带,每小时会夸大2次以测量血压。这是研究中最重要的部分之一,因此,按照指示,佩戴设备至关重要。还将为您提供学习日记,以跟踪您在某些日子,症状,学习治疗剂量以及在干预期间任何新的或恶化的医疗问题的时间表。
方法:使用韩国国家健康保险服务队列数据库,我们确定了2 359 243受试者,患有2型糖尿病,2015年至2016年≥20岁。基线脂质水平和糖尿病持续时间进行了评估,并随访至2020年12月(平均随访,3。9年)。受试者根据糖尿病的持续时间进行分类(新的,<5年,5-9岁或≥10岁)。我们以低密度脂蛋白胆固醇(LDL-C)<70 mg/dL分析了新发作的糖尿病组作为参考组。使用针对潜在混杂因素调整的COX比例危害模型估算了心肌梗塞(MI)和缺血性中风(IS)的95%顺式(IS)。结果:在随访期间,确定了45 883例MI和53538例IS病例。在新发作糖尿病组中,在LDL-C≥160mg/dL时,MI的风险开始增加,在糖尿病持续时间<5年的组中,在LDL-C≥130mg/dl时,MI的风险在LDL-C≥160mg/dL中增加。在糖尿病持续时间为5至9年的受试者中,LDL-C水平为100-129 mg/dl,130-159 mg/dL和≥160mg/dl的受试者与MI的风险显着相关(HR [95%CI] 1.13 [1.04-1.22],1.28 [1.17.117 [1.17-1.17-1.17],1.1.17.1.17.1.1.17.1.1.17.1.1.1.17.1.1.17.1.1.17 n [1.17],1.1.1.1.1.1.1.1.17.1.1.1.1.1.17 eft>。 分别)。即使在LDL-C 70-99 mg/dL种群中,糖尿病持续时间≥10岁的MI风险也增加了16%(HR [95%CI] 1.16 [1.08-1.25])。
1 苏黎世大学药理学和毒理学研究所,瑞士苏黎世。2 Acuitas Therapeutics Inc.,加拿大不列颠哥伦比亚省温哥华。3 Oncode 研究所,马克西玛公主儿科肿瘤中心,荷兰乌得勒支。4 苏黎世功能基因组学中心,苏黎世联邦理工学院/苏黎世大学,瑞士苏黎世。5 苏黎世联邦理工学院分子健康科学研究所生物系,瑞士苏黎世。6 苏黎世大学医院和大学病理学和分子病理学系,瑞士苏黎世。7 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世。8 Synthego Corporation,美国加利福尼亚州雷德伍德城。9 苏黎世大学生物化学系,瑞士苏黎世。10 苏黎世联邦理工学院基因组工程与测量实验室,瑞士苏黎世。 11 宾夕法尼亚大学医学系,美国宾夕法尼亚州费城。12 苏黎世大学儿童医院代谢与儿童研究中心分部,瑞士苏黎世。13 苏黎世综合人体生理学中心,瑞士苏黎世。14 苏黎世神经科学中心,瑞士苏黎世。15 苏黎世大学分子生命科学研究所,瑞士苏黎世。✉ 电子邮件:ssemple@acuitastx.com;schwank@pharma.uzh.ch
1生物学和化学系统研究所 - 生物学信息处理,德国Eggenstein-Leopoldshafen的Karlsruhe技术研究所; 2英国伯明翰大学医学与牙科科学学院代谢与系统研究所,英国伯明翰; 3澳大利亚布里斯班昆士兰州分子生物科学研究所; 4雀巢卫生科学研究所SA,EPFL创新公园,瑞士洛桑; 5德国Eggenstein- Leopoldshafen的Karlsruhe理工学院自动化和应用信息学研究所; 6德国卡尔斯鲁厄的Karlsruhe技术研究所应用物理学研究所; 7伊利诺伊大学伊利诺伊大学乌尔巴纳·坎普恩恩(Urbana-Champaign)物理系; 8德国Eggenstein-Leopoldshafen的Karlsruhe技术研究所纳米技术研究所