I.引言克莱顿·克里斯滕森(Clayton Christensen)在创新者的困境中介绍了破坏性创新的概念。破坏性创新是最初采用更简单,更实惠和可访问的解决方案的流程或产品。随着时间的流逝,这些创新改善了破坏已建立的市场。本文研究了破坏性创新的优势和挑战,并强调了其对小型和少数族裔企业的好处。使用案例研究,数据分析和图形见解,本文为决策者,企业家和投资者提供了可行的建议。了解破坏性创新定义和特征破坏性创新是指通过创建新市场或重塑现有市场来取代已建立的市场领导者的创新。这些创新通常从小规模开始,专注于市场的被忽视或服务不足的细分市场。与维持创新不同,该创新旨在提高现有产品的性能,颠覆性创新优先考虑可访问性,负担能力和简单性,使其最初对利基市场有吸引力。随着时间的流逝,随着创新的成熟,它开始吸引主流客户,从根本上改变了竞争格局i。破坏性创新的关键特征包括:1。针对服务不足的市场:颠覆性创新通常符合价格敏感或服务不足的客户,引入了由于关注更高修订细分市场而忽略的解决方案。这些市场通常被成熟的公司忽略,因为它们优先考虑其最有利可图的客户,通常会为低收入或地理孤立的人群提供服务的差距。例如,像西南航空这样的低成本航空公司最初是针对预算意识的旅行者,他们的服务不足或被关注商业乘客II的传统航空公司排除在外或排斥。通过以更简单,更实惠的解决方案来满足这些被忽视的群体的特定需求,不仅可以建立客户忠诚度,而且在市场上建立了立足点,领导者认为无利可图或无关紧要。随着时间的流逝,这些解决方案在质量上提高了质量,并扩大了对主流客户的吸引力,逐渐重塑了整个行业。下图显示了低端破坏者的开口是引入符合基本功能但减少多余功能的“足够好”产品。
3。在临床医学的人工智能中接受的结论提交:人机接口会议上的生成和交互式系统强调了AI在临床医学中的扩大作用。一系列研究涵盖了AI驱动的医学文本和临床注释分析的进步,到医学图像处理,神经生物学和人机界面的突破,突出了生成和经典AI的潜力,以改善医疗保健。所有提交中一致的主题是强调实用的现实世界应用,显示了AI提高诊断准确性的能力,监测认知症状,分析不同的数据类型并增强临床决策过程。尽管有这些进步,但需要确定临床问题以及对医疗保健中AI技术的持续评估和评估,以确保其安全性,功效和可靠性仍然至关重要。本文介绍的作品对这种正在进行的对话做出了重大贡献,展示了将AI整合到医疗保健景观中的可能性和剩余挑战。参考Duffy,G.,Christensen,K。和Ouyang,D。(2024)。利用3D超声心动图评估AI模型性能在预测分布数据的心脏功能方面。生物计算的太平洋研讨会(PSB)。 Huang,Z.,Bianchi,F.,Yuksekgonul,M.,Montine,T。J.,&Zou,J。 (2023)。 使用医学Twitter的病理图像分析的视觉语言基础模型。 生物计算的太平洋研讨会(PSB)。 江,Y.,欧文,J。 (2024)。生物计算的太平洋研讨会(PSB)。Huang,Z.,Bianchi,F.,Yuksekgonul,M.,Montine,T。J.,&Zou,J。 (2023)。 使用医学Twitter的病理图像分析的视觉语言基础模型。 生物计算的太平洋研讨会(PSB)。 江,Y.,欧文,J。 (2024)。Huang,Z.,Bianchi,F.,Yuksekgonul,M.,Montine,T。J.,&Zou,J。(2023)。使用医学Twitter的病理图像分析的视觉语言基础模型。生物计算的太平洋研讨会(PSB)。 江,Y.,欧文,J。 (2024)。生物计算的太平洋研讨会(PSB)。江,Y.,欧文,J。(2024)。自然医学,29(9),第9条。https://doi.org/10.1038/s41591-023-02504-3 Javedani Sadaei,H.Zoish:一种新颖的功能选择方法利用了医疗保健中机器学习应用的Shapley添加值。A.,Ng,A。N.,&Zou,J.vetllm:大型语言模型,用于预测兽医注释的诊断。生物计算的太平洋研讨会(PSB)。 li,A.,Yang,Y.,Cui,H。,&Yang,C。(2024)。 Brainsteam:基于连接组的FMRI分析对主题分类的实用管道。 生物计算的太平洋研讨会(PSB)。生物计算的太平洋研讨会(PSB)。li,A.,Yang,Y.,Cui,H。,&Yang,C。(2024)。Brainsteam:基于连接组的FMRI分析对主题分类的实用管道。生物计算的太平洋研讨会(PSB)。生物计算的太平洋研讨会(PSB)。
1。Wild D,von Maltzahn R,Brohan E,Christensen T,Gonder-Frederick L.对糖尿病中恐惧低血糖的文献的批判性评论:对糖尿病管理和患者教育的影响。患者教育咨询公司。2007; 68(1):10-15。 2。 Pedersen-Bjergaard U,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易发生严重低血糖症的1型糖尿病患者严重低血糖症的风险(Harboana试验):一种前瞻性,随机,开放标签,盲点 - 端点交叉 - 过度试验。 柳叶刀糖尿病内分泌。 2014; 2(7):553-561。 3。 Pedersen-Bjergaard U,Agesen RM,BrøsenJMB等。 比较容易患有夜间严重低血糖的1型糖尿病患者的胰岛素Degludec和甘胶U100的治疗方法:降低,随机,受控,开放标签,交叉试验。 糖尿病OBES METAB。 2021; 1 - 11:257-267。 4。 Agesen RM,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非严重低血糖症的频率的影响:连续葡萄糖监测检测到的率要比对血糖的自我监测(HypoAna Arymentor)(HypoAna Arymentoring)的影响。 糖尿病技术。 2018; 20(3):247-256。 5。 Agesen RM,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非血糖低血糖频率的影响:Harboana试验。 糖尿病代谢。 2016; 42(4):249-255。 6。2007; 68(1):10-15。2。Pedersen-Bjergaard U,Kristensen PL,Beck-Nielsen H等。胰岛素类似物对容易发生严重低血糖症的1型糖尿病患者严重低血糖症的风险(Harboana试验):一种前瞻性,随机,开放标签,盲点 - 端点交叉 - 过度试验。柳叶刀糖尿病内分泌。2014; 2(7):553-561。 3。 Pedersen-Bjergaard U,Agesen RM,BrøsenJMB等。 比较容易患有夜间严重低血糖的1型糖尿病患者的胰岛素Degludec和甘胶U100的治疗方法:降低,随机,受控,开放标签,交叉试验。 糖尿病OBES METAB。 2021; 1 - 11:257-267。 4。 Agesen RM,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非严重低血糖症的频率的影响:连续葡萄糖监测检测到的率要比对血糖的自我监测(HypoAna Arymentor)(HypoAna Arymentoring)的影响。 糖尿病技术。 2018; 20(3):247-256。 5。 Agesen RM,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非血糖低血糖频率的影响:Harboana试验。 糖尿病代谢。 2016; 42(4):249-255。 6。2014; 2(7):553-561。3。Pedersen-Bjergaard U,Agesen RM,BrøsenJMB等。比较容易患有夜间严重低血糖的1型糖尿病患者的胰岛素Degludec和甘胶U100的治疗方法:降低,随机,受控,开放标签,交叉试验。糖尿病OBES METAB。 2021; 1 - 11:257-267。 4。 Agesen RM,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非严重低血糖症的频率的影响:连续葡萄糖监测检测到的率要比对血糖的自我监测(HypoAna Arymentor)(HypoAna Arymentoring)的影响。 糖尿病技术。 2018; 20(3):247-256。 5。 Agesen RM,Kristensen PL,Beck-Nielsen H等。 胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非血糖低血糖频率的影响:Harboana试验。 糖尿病代谢。 2016; 42(4):249-255。 6。糖尿病OBES METAB。2021; 1 - 11:257-267。4。Agesen RM,Kristensen PL,Beck-Nielsen H等。胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非严重低血糖症的频率的影响:连续葡萄糖监测检测到的率要比对血糖的自我监测(HypoAna Arymentor)(HypoAna Arymentoring)的影响。糖尿病技术。2018; 20(3):247-256。5。Agesen RM,Kristensen PL,Beck-Nielsen H等。胰岛素类似物对容易患有严重低血糖的1型糖尿病患者非血糖低血糖频率的影响:Harboana试验。糖尿病代谢。2016; 42(4):249-255。 6。2016; 42(4):249-255。6。Agesen RM,Alibegovic AC,Andersen Hu等。胰岛素degludec对1型糖尿病成年人症状性低血糖症的风险和夜间严重严重低血糖的高风险(HYPODEG试验):研究基本原理和设计。BMC内主疾病。2019; 19(1):78。7。BøggildBrøsenJM,Agesen RM,Alibegovic AC等。连续glu- glu-cosose录制的低血糖与胰岛素degludec或胰岛素glargine U100的患者,患有1型糖尿病患者,容易发生夜毒性严重低血糖。糖尿病技术。2022; 24(9):643-654。8。Heinemann L,Schoemaker M,Schmelzeisen-Redecker G等。的好处和局限性作为
2024年8月22日草稿盐河项目农业改善和电力区电力委员会会议于2024年8月22日(星期四)上午9:30召集,在亚利桑那州坦佩市北米尔大街1500号的SRP管理大楼的Hoopes Board会议室举行。本次会议是在符合公开会议法律准则的情况下进行的,并通过电话会议进行。地区和盐河谷水用户协会(协会)统称为SRP。在场召集的委员会成员是J.M.小白人,主席; L.C. 威廉姆斯,副主席;和R.J. Miller,K.L。 Mohr-Almeida,M.V。 步伐和P.E. 罗维。 委员会成员缺席,是C. Clowes。 也是卢梭总统;副总裁C.J. dobson;董事会成员M.J. Herrera,K.J。 约翰逊,L.D。 Rove和S.H. 威廉姆斯;理事会主席J.R. Shelton;理事会联络D.B. Lamoreaux和G.E. Geiger;理事会成员R.S. Kolb,C。Resch-Geretti和W.P. Schrader III; mmes。 I.R. Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。小白人,主席; L.C.威廉姆斯,副主席;和R.J. Miller,K.L。Mohr-Almeida,M.V。 步伐和P.E. 罗维。 委员会成员缺席,是C. Clowes。 也是卢梭总统;副总裁C.J. dobson;董事会成员M.J. Herrera,K.J。 约翰逊,L.D。 Rove和S.H. 威廉姆斯;理事会主席J.R. Shelton;理事会联络D.B. Lamoreaux和G.E. Geiger;理事会成员R.S. Kolb,C。Resch-Geretti和W.P. Schrader III; mmes。 I.R. Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Mohr-Almeida,M.V。步伐和P.E.罗维。委员会成员缺席,是C. Clowes。也是卢梭总统;副总裁C.J.dobson;董事会成员M.J. Herrera,K.J。约翰逊,L.D。 Rove和S.H. 威廉姆斯;理事会主席J.R. Shelton;理事会联络D.B. Lamoreaux和G.E. Geiger;理事会成员R.S. Kolb,C。Resch-Geretti和W.P. Schrader III; mmes。 I.R. Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。约翰逊,L.D。Rove和S.H. 威廉姆斯;理事会主席J.R. Shelton;理事会联络D.B. Lamoreaux和G.E. Geiger;理事会成员R.S. Kolb,C。Resch-Geretti和W.P. Schrader III; mmes。 I.R. Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Rove和S.H.威廉姆斯;理事会主席J.R. Shelton;理事会联络D.B.Lamoreaux和G.E.Geiger;理事会成员R.S.Kolb,C。Resch-Geretti和W.P. Schrader III; mmes。 I.R. Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Kolb,C。Resch-Geretti和W.P.Schrader III; mmes。I.R. Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。I.R.Avalos,A.N。 Bond-Simpson,M.J。Burger,A.P。 Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Avalos,A.N。Bond-Simpson,M.J。Burger,A.P。Chabrier,A.Y。 Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Chabrier,A.Y。Gilbert,L.F. Hobaica,L.A。Meyers,K.S。 Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Gilbert,L.F. Hobaica,L.A。Meyers,K.S。Ramaley,J.R。Schuricht,C.M。 Sifuentes和P.L. Syrjala; L. Arthanari先生,J.D。 Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Ramaley,J.R。Schuricht,C.M。Sifuentes和P.L.Syrjala; L. Arthanari先生,J.D。Coggins,G.A。 Delizio,J.M. felty,J.V。 giacalone,C.R。 Janick,B.J。 Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Coggins,G.A。Delizio,J.M.felty,J.V。giacalone,C.R。Janick,B.J。Koch,M.J。O'Connor,B.A。 Olsen,J.M. Pratt,R.R。Koch,M.J。O'Connor,B.A。Olsen,J.M. Pratt,R.R。Olsen,J.M.Pratt,R.R。Taylor和J.C. Tucker;西方资源倡导者(WRA)的墨菲·班纳曼(Murphy Bannerman); Leo Bird和Kam Richmond拥有明亮的夜便力;克里斯滕森同事的布鲁斯·查普曼(Bruce Chapman);恒星力量的斯蒂芬·兰德(Stephen Land Jr.);西格里奇的阿曼达·奥蒙德(Amanda Ormond);和公众成员约瑟夫·凡恩·佩斯(Joseph Verne Pace)。符合A.R.S.§38-431.02,公司秘书办公室的安德鲁·戴维斯(Andrew Davis)在2024年8月20日星期二上午9:00在亚利桑那州坦佩市北米尔大街1500号的SRP行政大楼举行了电力委员会会议的通知和议程。主席J.M.怀特(Div> White Jr.)打电话给会议。同意议程主席J.M.怀特(White Jr.
塑料几乎在现代社会的每个方面都变得普遍,使其成为最广泛使用的合成材料(Sánchez等,2011; Worm等,2017)。其固有的特性,例如耐用性,可塑性,透明性和惰性,在环境中的持续性有助于其持续性,从而导致了塑料积累的紧迫问题。实际上,塑料占土地填充物数量总数的20%,这使垃圾填埋场成为不可持续的选择,这是由于塑料的延长降解时间(Sánchez等,2011)。有效的塑料废物回收已被确定为塑料回收领域的下一个主要挑战,需要开发新过程(Hopewell等,2009)。当前的回收实践使用机械研磨,熔体过滤,挤出和颗粒化来生产用于二级制造的树脂。但是,这些过程通过链分裂降低了聚合物的性能,从而导致分子量降低,从而影响聚合物熔体的粘弹性特性。没有办法升级再生材料以使其更有价值(例如,通过溶剂辅助过程,通过删除添加剂,杂质和低聚物来生产食品级树脂),目前的再循环效果的经济可行性可能不足以鼓励大规模的循环效果。化学回收塑料废物到可重复使用的单体被认为是解锁圆形性的关键,只要该过程可以在闭环中有效地进行。尽管在当前实践中很难实现,但是有一种新发现的称为Polydiketoenamine(PDK)的材料,可以作为新塑料经济的圆形聚合物(Helms,2022)。PDK树脂是由可商购的胺单体和新型Triketones产生的,这些单体是从1,3-二酮和二羧酸合成的(Demarteau等,2022)。pdk树脂由于动态键合的动态粘合而表现出热塑性和热固性的特征,该粘结具有良好的文献记载且独有的动态共价聚合物网络(Scheutz等,2019; Jin等,2019; Yue等,2020)。PDK树脂可以以相对较高的产率(90-99%,取决于公式)以相对较高的产量(90-99%)恢复原始质量单体(Demarteau等,2022)。可以生产,使用,回收和重新使用的PDK树脂的性质而不会丢失价值,这表明可以产生具有最小环境影响的可持续聚合物的可能性(Christensen等,2019)。
自闭症谱系障碍 (ASD) 是指一系列神经发育障碍,其特征是社交技能、重复行为、言语和非言语交流方面的挑战(美国精神病学协会,2013 年)。自闭症症状在儿童早期出现并持续一生(Christensen 等人,2016 年)。ASD 表现的一个核心特征是其在发病、合并症、行为表现和治疗反应方面的异质性,以及异质性的遗传和神经生物学基础(Lombardo 等人,2019 年)。针对遗传、环境和神经发育生物学因素的开创性研究可能有助于理解在 ASD 人群中观察到的更广泛的表型表现。在这个框架内,阐明大脑表型如何决定特定的社会和认知特征可以为临床医生提供有价值的见解,有助于将研究结果转化为临床实践,并支持实施量身定制的干预措施。从这些陈述中产生了创建当前研究主题的启发性想法,该主题收集了最新的前沿贡献,揭示了有关 ASD 的神经生物学和遗传特征的重要见解。最后,当前的研究主题包括 11 篇论文(一篇评论论文、两篇假设和理论论文和八篇原创研究)。在本文中,我将讨论不同的主题:(i) ASD 中报告的大脑解剖学差异及其与临床表型的关系;(ii) 动物和人类研究中的遗传变异和对 ASD 发病机制的生物学意义。最后讨论了未来的发展方向。在过去的几十年里,多种微妙的大脑结构改变似乎与 ASD 症状有关。这些解剖变化包括非典型皮质厚度(Hardan 等人,2006 年;Hyde 等人,2010 年)、灰质体积增加(Retico 等人,2016 年;Lucibello 等人,2019 年)、大脑结构不对称改变(Gage 等人,2009 年;Floris 等人,2016 年;Postema 等人,2019 年)以及微结构连接中断(Cheon 等人,2011 年;Ameis 和 Catani,2015 年)。Weber 等人通过检查代表不同年龄组的大量 ASD 和对照患者数据集中的扩散张量成像 (DTI) 指标和连接组边缘密度,评估了年龄对白质微结构完整性的影响。作者表明,与年龄相关的自闭症相关变化在青少年和年轻人中很明显,但在婴儿中并不明显
联合国大会(2015 年)制定了一项议程,其中包含 17 个目标,需要在全球范围内到 2030 年实现,以促进可持续的未来。实现这些目标需要设计和实施更有效的战略来管理复杂系统,包括人类及其社会、世界经济、城市地区、自然生态系统和气候(Gentili,2021a)。一项有前途的战略,即正在蓬勃发展的战略,依赖于人工智能 (AI) 和机器人技术的发展。人工智能帮助人类收集、存储和处理监测复杂系统不断演变所需的大数据(Corea,2019 年)。人工智能还帮助我们下定决心控制复杂系统的行为。硬机器人和软机器人让人类能够进入原本无法进入的环境。例如,它们帮助我们(1)研究其他行星的地球化学特征、考察海洋深渊以发现新的贵重材料和能源矿藏;(2)进入人体内部器官进行侵入性较小的手术;(3)在肮脏或危险的地方工作。开发人工智能的主要传统方法有两种(Lehman 等人,2014 年;Mitchell,2019 年)。第一种方法是编写在基于冯·诺依曼架构的电子计算机上运行的“智能”软件,该架构的主要缺点是处理单元和存储单元在物理上是分开的。一些软件模仿严谨的逻辑思维,而另一些软件模仿神经网络的结构和功能特征来学习如何从数据中执行任务。开发人工智能的第二种方法是在神经假体的硬件中实现人工神经网络,或设计类似大脑的计算机,将处理器和内存限制在同一空间中(所谓的内存计算;Sebastian 等人,2020 年)。如果人工神经网络由硅基电路或无机忆阻器制成,则它们是刚性的;如果基于有机半导体薄膜,则它们是柔性的(Christensen 等人,2022 年;Lee and Lee,2019 年;Wang 等人,2020 年;Zhu 等人,2020 年)。它们可以采用三种不同的架构进行设计:(A1)前馈(具有可训练的单向连接)、(A2)循环(具有可训练的反馈动作)或(A3)储层(由未训练的非线性动态系统与可训练的输入和输出层耦合而成)网络(Nakajima,2020 年;Tanaka 等人,2019 年;Cucchi 等人,2022 年;见图 1A)。在过去十年左右的时间里,一种开发人工智能的新颖而有前途的策略被提出:它包括通过湿件(即液体)中的分子、超分子和系统化学来模仿人类智能和所有其他生物所表现出的智能形式
威廉·奥特曼,二月22.1931 S. W. FARNHAM。3 月 12 日。1931 H.J.佩里。4 月 13 日。1931 A.I.SAYERS。十月1931 年 11 月 11 日 J. E. 卡斯特罗姆 (J. E. KARSTROM)。3 月 24 日。1932 约瑟夫·D·佐克。5 月 28 日。1932 爱德华·卡希尔。八月4.1932 约瑟夫·维亚诺。十二月12.1932 年约翰·罗洛。二月6.1933 大卫一世摇滚,八月2.1933 WM。赫顿。八月18.1934 弗雷德·C·克拉克。十月24.1934 ERW1N CHINN。4 月 16 日。1935 年亚当·库里。朱诺 12 号。1935 W. H. SI.INGLUFF。九月10.1935 CHAS。B.斯派塞。十月26.1935 年纳尔逊·P·莫里斯。九月3.1936 唐·威利斯。文档。9.1936 T.E.库勒汉。一月11.1937 年阿尔伯特·韦伯,3 月 5 日。1937 H. B. 库利。3 月 23 日。1937 年 J. W. 斯旺森。七月。1937 年约瑟夫·麦克法登。九月15.1937 E.G.刘易斯。九月21.1937 E. L. 史蒂文斯。九月28.1937 W. J. 阿古斯特。文档。17.1937 H.H.泰勒。SR.. 文档。28.1937 E. L. 伯杰。5 月 27 日。1938 J. I. 汤普森。6 月 24 日。1938 P.W.麦克默多。7 月 11 日。1938 J.A. EDE。7 月 26 日。1938 M. J. 米切尔。九月11.1938 J.F.汉密尔顿。九月22.1938 H.J.朗斯塔夫。十月12.1938 年约翰·约翰逊。一月2.1939 年 J.A.BI.OMQUIST。一月9.1939 约翰·怀特。4 月 15 日。1939 年查尔斯·哈夫特。5 月 21 日。1939 布鲁诺·F·迈耶。7 月 21 日。1939 约翰·A·加西亚。八月11.1939 A.J.穆尔谢德。十月16.1939 哈维·E·史密斯。十一月6.1939 J.W.麦克里肯。十一月30.1939 J. J. 哈巴特。3 月 4 日。1940 年塞缪尔·亨特曼。九月1940 年 13 月 西蒙·A·博德克 (SIMON A. BOEDEKER)。十月12.1940 约翰·H·戴维斯。十月21.1940 S.J.威尔斯。十月22.1940 年哈里·亨特曼。十一月5.1940 I.W.格伦赖特。十一月27.1940 J. J. 威尔逊。文档。18.1940 NICHOLAS CHRISTENSEN。文档。26.1940 JOHN W. POLING。1 月 31 日。1941 JOHN T. RYAN。2 月 20 日。1941 M. F. PELTIER。4 月 2 日。1941
Gonterman F.(2023)。一项系统的审查评估了主要抑郁症中对经颅磁刺激反应的与患者相关的预测指标。神经精神病和治疗,19,565–577。Mishra J等(2022)。新兴的神经治疗技术。Loscalzo J,&Fauci A和Kasper D和Hauser S,&Longo D和Jameson J(编辑。),哈里森的内科原理,21e。McGraw Hill。 nguyen B等(2019)。 患者治疗脑损伤。 mitra r(ed。 ),康复医学原则。 McGraw Hill。 Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。nguyen B等(2019)。患者治疗脑损伤。mitra r(ed。),康复医学原则。McGraw Hill。 Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。Raj K.S.等(2023)。 情绪障碍(抑郁和躁狂症)。 Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。 ),当前的医学诊断和治疗2023。 McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Raj K.S.等(2023)。情绪障碍(抑郁和躁狂症)。Papadakis M.A.和McPhee S.J.和Rabow M.W.和McQuaid K.R.(编辑。),当前的医学诊断和治疗2023。McGraw Hill。 Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。Raj Y等人(2019年)。 抑郁症。 Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑 ),行为医学:临床实践指南,5E。 McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Raj Y等人(2019年)。抑郁症。Feldman M.D.和Christensen J.F.和Satterfield J.M.和Laponis R(编辑),行为医学:临床实践指南,5E。McGraw Hill。 S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。McGraw Hill。S.E. Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。S.E.Hal等人(2014年)。 第515-518页。 Vida,R。G.等。 (2023)。 在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。 BMC精神病学,23(1),545。 Hsu,C。W.等。 (2024)。 神经科学和生物行为评论,156,105483。 Jin,Y。等。 (2024)。 (2024)。Hal等人(2014年)。第515-518页。Vida,R。G.等。(2023)。在两次抗抑郁治疗失败后,重复经颅磁刺激(RTMS)对重度抑郁症(MDD)的辅助治疗的疗效:随机假手术对照试验的荟萃分析。BMC精神病学,23(1),545。Hsu,C。W.等。(2024)。神经科学和生物行为评论,156,105483。Jin,Y。等。 (2024)。 (2024)。Jin,Y。等。(2024)。(2024)。比较了对躁郁症抑郁症治疗的不同非侵入性脑刺激干预措施:随机对照试验的网络荟萃分析。神经调节对阿尔茨海默氏病患者冷漠的功效和安全性:随机对照试验的系统评价和荟萃分析。精神病学杂志,171,17-24。Liu,G。等。 重复经颅磁刺激的影响以及认知训练对阿尔茨海默氏病患者认知功能的影响:系统评价和荟萃分析。 衰老神经科学的边界,15,1254523。 Pagali,S。R.等。 (2024)。 经颅磁刺激对轻度认知障碍,阿尔茨海默氏病,阿尔茨海默氏病与疾病相关的痴呆症和其他认知障碍的疗效和安全性:系统评价和荟萃分析。 国际心理学,1-49。 XIU,H。等。 (2024)。 高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。 神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。 Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。Liu,G。等。重复经颅磁刺激的影响以及认知训练对阿尔茨海默氏病患者认知功能的影响:系统评价和荟萃分析。衰老神经科学的边界,15,1254523。Pagali,S。R.等。(2024)。经颅磁刺激对轻度认知障碍,阿尔茨海默氏病,阿尔茨海默氏病与疾病相关的痴呆症和其他认知障碍的疗效和安全性:系统评价和荟萃分析。国际心理学,1-49。XIU,H。等。 (2024)。 高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。 神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。 Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。XIU,H。等。(2024)。高频重复的经颅磁刺激(HF-RTMS)对老年人在轻度至中度的阿尔茨海默氏病中的全球认知功能:系统评价和荟萃分析。神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(1),13-25。Huang,P。等。 (2024)。 对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。 神经疗法的专家评论,24(1),117–127。Huang,P。等。(2024)。对阿尔茨海默氏病的三种脑刺激技术的功效分析:反复经颅磁刺激,经颅直流电流刺激和深脑刺激的荟萃分析。神经疗法的专家评论,24(1),117–127。Liu,Z。等。 (2024)。 经颅磁刺激对帕金森氏病冻结步态的影响:对随机对照试验的系统评价和荟萃分析。 衰老神经科学中的边界,16,130485。 Wang,Z。等。 (2024)。 低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。 癫痫研究,199,107277。 Galimberti,A等人(2024)。 RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。Liu,Z。等。(2024)。经颅磁刺激对帕金森氏病冻结步态的影响:对随机对照试验的系统评价和荟萃分析。衰老神经科学中的边界,16,130485。Wang,Z。等。 (2024)。 低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。 癫痫研究,199,107277。 Galimberti,A等人(2024)。 RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。Wang,Z。等。(2024)。低频RTMS对癫痫病的时间效应和患者认知功能的改善:系统评价和荟萃分析。癫痫研究,199,107277。Galimberti,A等人(2024)。RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。 神经心理学与生物精神病学的进展,128,110863。 Hu,Y。等(2024)。 非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。 大脑研究,1822,148633。 Knorst,G。R. S.等(2024)。 经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。 估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。 arquivos de neuro-psiquiatria,82(1),1-10。 Bormann,N。L.等(2024)。 系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。 美国成瘾期刊。 Mehta,D。等人(2024)。 对药物使用障碍的神经调节疗法的系统综述和荟萃分析。RTM和TDCS治疗慢性TBI症状的有效性:系统的综述和荟萃分析。神经心理学与生物精神病学的进展,128,110863。Hu,Y。等(2024)。非侵入性脑刺激对脑损伤患者意识障碍的影响:对随机对照试验的系统综述和荟萃分析。大脑研究,1822,148633。Knorst,G。R. S.等(2024)。经颅磁刺激在幻影肢体疼痛的治疗中:系统评价。估算巨麦味transcraniana no tratamento da do do membro Fantasma:UmaRevisãoSistemática。arquivos de neuro-psiquiatria,82(1),1-10。Bormann,N。L.等(2024)。系统的审查和荟萃分析:结合经颅磁刺激或直接电流刺激与药物治疗物质使用障碍的药物疗法。美国成瘾期刊。Mehta,D。等人(2024)。对药物使用障碍的神经调节疗法的系统综述和荟萃分析。神经心理药理学:美国神经心理药理学学院的官方出版,49(4),649–680。Qiu,Y。T等。 (2024)。 在小脑共济失调中重复经颅磁刺激的功效和安全性:系统评价和荟萃分析。 小脑(英国伦敦),23(1),243–254。 li,X。等。 (2024)。 非侵入性脑刺激对与精神分裂症相关的认知障碍认知功能的功效和安全性:系统评价和荟萃分析。 精神病学杂志,170,174–186.Huang,W。等。 (2024)。 非侵入性脑刺激在治疗精神分裂症中的一般心理病理学症状中的功效:一项荟萃分析。 综合神经科学杂志,23(1),7。 Stephens,E.,Dhanasekara,C.S.,Montalvan,V.,Zhang,B.,Bassett,A.,Hall,R.,Rodaniche,A. 重复经颅磁刺激对慢性每日头痛预防的实用性:系统评价和荟萃分析。 当前的疼痛和头痛报告。 Yan,M。等(2024)。 非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。 衰老临床和实验研究,36(1),37。 Tang,Z。等。 (2024)。 RTM对中风后运动恢复的影响:fMRI研究的系统评价。 Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Qiu,Y。T等。(2024)。在小脑共济失调中重复经颅磁刺激的功效和安全性:系统评价和荟萃分析。小脑(英国伦敦),23(1),243–254。li,X。等。(2024)。非侵入性脑刺激对与精神分裂症相关的认知障碍认知功能的功效和安全性:系统评价和荟萃分析。精神病学杂志,170,174–186.Huang,W。等。(2024)。非侵入性脑刺激在治疗精神分裂症中的一般心理病理学症状中的功效:一项荟萃分析。综合神经科学杂志,23(1),7。Stephens,E.,Dhanasekara,C.S.,Montalvan,V.,Zhang,B.,Bassett,A.,Hall,R.,Rodaniche,A.重复经颅磁刺激对慢性每日头痛预防的实用性:系统评价和荟萃分析。当前的疼痛和头痛报告。Yan,M。等(2024)。 非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。 衰老临床和实验研究,36(1),37。 Tang,Z。等。 (2024)。 RTM对中风后运动恢复的影响:fMRI研究的系统评价。 Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Yan,M。等(2024)。非侵入性脑刺激对冲程后认知障碍的比较功效:网络荟萃分析。衰老临床和实验研究,36(1),37。Tang,Z。等。(2024)。RTM对中风后运动恢复的影响:fMRI研究的系统评价。Alfredo,L。C.等(2024)。 大脑和行为,14(1),E3370。 Han,C。等人(2024)。Alfredo,L。C.等(2024)。大脑和行为,14(1),E3370。Han,C。等人(2024)。神经科学:意大利神经学会和意大利临床神经生理学学会的官方杂志,45(3),897–909。中风患者的不同非侵入性脑刺激治疗可用于上肢恢复的组合:系统评价。非侵入性脑刺激技术的有效性和安全性结合了中风后的口感培训:系统评价和荟萃分析。医学,103(2),E36880。Tangjade,A。等。 (2024)。 非侵入性神经调节结合康复疗法可改善中风患者的平衡和步态速度:系统评价和网络荟萃分析。 美国物理医学与康复杂志。 tan,Y。等。 (2024)。 对反应后失语症中重复转颅磁刺激的最佳因素研究的文献综述和荟萃分析。 欧洲医学研究杂志,29(1),18。https://lifequalitytms.com/what-is-tmTangjade,A。等。(2024)。非侵入性神经调节结合康复疗法可改善中风患者的平衡和步态速度:系统评价和网络荟萃分析。美国物理医学与康复杂志。tan,Y。等。(2024)。对反应后失语症中重复转颅磁刺激的最佳因素研究的文献综述和荟萃分析。欧洲医学研究杂志,29(1),18。https://lifequalitytms.com/what-is-tm
简介 展望未来,高校面临着不断变化的形势。近期经济衰退带来的财政压力不断增加,政府支持减少,研究经费削减,再加上学费大幅下降和筹款困难。营利性机构和在线课程(包括 MOOC 和其他虚拟平台)也带来了破坏性威胁。1 许多机构的教师感到被他们所认为的机构内部日益增长的官僚主义引擎和日益蔓延的管理主义所排挤。总之,这些力量要求大学更加战略性和创新性地思考,但这样做的方式要符合其学术价值观和选民的意愿,而不是不加思索地采用它们有时倾向于的私营部门战略模式。本文描述了我们对高等教育机构与营利性公司的鲜明对比的理解。我们特别强调大学的“松散耦合”结构、其“政教合一”特征以及子单位的激增,这些子单位以对领导力构成独特挑战的方式放大了这种结构和特征。我们将简要回顾高校目前面临的一些重大压力。最后,我们将介绍一些领导策略,这些策略分为两个主题:保护现有系统和改变现有系统。 2 松散耦合 高等教育的领导和战略规划环境通常比公司更复杂。学校、学院和大学是组织理论家称之为“松散耦合”系统的典型例子(Orton 和 Weick,1990 年)。在松散耦合的系统中,各个元素相对于它们所嵌入的较大系统具有高度的自主性,通常会产生一种联合特征。系统某一部分的行为对另一部分的影响很小或没有影响,或者可能不可预测地引发与刺激不成比例的反应。元素之间的联系通常不为人所知或不均衡。在松散耦合的系统中,整合的力量(担心整体、其身份、完整性和未来)通常与专业化的力量相比较弱。在重要方面,中央权力来自成员,而不是从上级获得授权的成员元素。教育机构的松散耦合特性要求采用不同的领导和规划方法。无论教育工作者是否听说过“松散耦合”一词,他们都对它的动态有着本能的理解。教师之间在教学与研究之间由来已久的紧张关系如今通常表现为教师通过共同的学术兴趣与大学外的学科同事建立更多的联系(通常通过万维网),而不是与自己机构内的教师建立联系。某些院系认为自己在能力、严谨性、学术成果或一般方面都更胜一筹,这并不罕见。1 请参阅此处《创新型大学:从内到外改变高等教育的 DNA》,克莱顿·克里斯滕森和亨利·艾林合著。Jossey-Bass,2011 年。2 一般而言,机构越小,我们对高等教育机构的描述就越不适用,尽管来自小型学院的读者可能会在这幅大型机构的图景中看到他们自己的暗示。然而,关于领导策略的部分应该会引起来自小型和大型、更复杂的学术机构的个人的兴趣。
