●精心策划和安排了成千上万个已有的容器,以启用交互式调试会话(Kubernetes,aws,typeScript)。●设计并实施了Chromium浏览器过程内存快照的创建和缓存,将调试会话启动性能提高了10次以上(Typescript,Node.js,S3,Postgres)。●优化了通过Websocket进行大量数据传输处理高量数据传输的优化,可实现后端服务延迟的30%(Typescript,Node.js,Avro,Postgres)。●对分布式系统(Typescript,Node.js,Postgres,s3)进行了数千pb的存储,检索和元数据管理。●使用高级可观察性工具开发了全面的诊断系统;增强了对应用程序性能指标的实时可见性,将事件分辨率的分辨率从小时减少到几分钟(OpentElemetry,Honeycomb.io,Datadog,Sentry)。●设计并实现了一个协议缓存层,该缓存层将开始时间从10分钟降低到只有5秒钟(ZOD,Postgres,S3,Typescript,Node.js)。
用于光氧化还原催化。● 开发了用于光氧化反应的新型强吸收铬(III)复合物 ● 构建了用于多光子动力学的双泵探针瞬态吸收光谱仪。● 构建了基于激光的光反应器来研究高强度照明光催化。● 培训研究生使用瞬态吸收光谱仪。● 使用 WordPress 编写研究小组网站(https://castellano.sciences.ncsu.edu/)● 为能源部 EFRC 的 BioLEC 提供光谱和机械专业知识● 指导两名本科生的独立研究
分析镀铬铝合金,用于铬,镍和铜涂层的质量控制。使用SEM产生的黑白图像(左),很难识别不同的材料,尤其是在反向散射的对比度仅有很小的差异时。Axia Chemisem图像(右)将每个元素作为不同的颜色呈现,从而可以轻松区分样品中的所有材料。在点和ID工作流中,这是选择相关点以进行进一步分析的关键信息。
1 适用的关键矿产包括特定形式的铝、锑、砷、重晶石、铍、铋、铈、铯、铬、钴、镝、铒、铕、萤石、钆、镓、锗、石墨、铪、钬、铟、铱、镧、锂、镥、镁、锰、钕、镍、铌、钯、铂、镨、铑、铷、钌、钐、钪、钽、碲、铽、铥、锡、钛、钨、钒、镱、钇、锌和锆。
PIN 示例:MS51525A10N 表示适配器、管到凸台、.6250 英寸(15.875 毫米)、高铬镍合金。不建议使用镉。对于本文件的用户,建议仅当本文件中指定的其他材料和表面处理无法满足性能要求时,才使用镀镉的碳钢材料。根据 T9070-AL-DPC-020/077-2 的要求,除非获得 NAVSEA 批准,否则禁止在 NAVSEA 所属的船上系统中使用镉。除非合同中另有明确要求,否则禁止在陆军车辆上使用镀镉或沉积六价铬的涂层。MS51525 或任何参考程序中不得使用 I 类和 II 类 ODS。优先顺序。除非本文或合同中另有说明,如果本文件的文本与本文引用的参考文献之间存在冲突,则以本文件的文本为准。但是,除非获得特定豁免,否则本文件中的任何内容均不会取代适用的法律和法规。引用的文件应为招标邀请之日有效的文件。修订注释。本规范的页边空白处标有垂直线,以指示由本修订产生的修改。这样做只是为了方便,政府对这些注释中的任何不准确之处不承担任何责任。投标人和承包商应注意根据整个内容评估本文件的要求,而不管页边空白处的注释如何。
重大技术进步依赖于对电荷和自旋的控制和利用——这是电子的两个基本特性。最近,人们对磁振子学领域的兴趣日益浓厚,该领域试图了解由于自旋或磁振子的集体振荡而形成的模式的物理原理。利用磁振子提供了额外的最小化损失的范围,因为不需要传输电子。在 TIFR 纳米电子学小组最近的一项研究中,在具有范德华层状晶体结构的反铁磁材料中观察到驻自旋波模式。当微波频率的电磁信号在磁场存在下与反铁磁体中的磁矩相互作用时,这些模式被激发。这项研究呈现出一个令人兴奋的前景,因为它是范德华材料中驻自旋波的首次观察。该团队研究的材料三氯化铬 (CrCl 3 ) 属于三卤化铬家族,该家族也是首次报道在 2D 极限下(即当晶体变薄至单个原子厚度时)表现出磁性的材料之一。由于这些材料具有层状可裂结构,因此有可能用于现代电子设备的小型化。虽然在接近 THz 频率的其他反铁磁体中也发现了驻自旋波模式,但在本研究中,该团队在低 GHz 微波频率下激发了驻自旋波模式,该频率通常用于通信和量子信息相关研究。这项研究于 2020 年 11 月 27 日在线发表在《先进材料》杂志上。
电沉积是制备合金的重要方法之一。利用电沉积合成合金的方法引起了广泛关注,因为它能够在室温下在金属基材上制备合金薄膜。到目前为止,含有六价铬(Cr 6 +)离子的电解槽已用于金属铬的电沉积。然而,众所周知,Cr 6 + 离子会引起有害的环境污染[4,5]。在欧盟,WEEE/RoHS(废弃电子电气设备/限制在电子电气设备中使用某些有害物质)指令限制使用Cr 6 + 离子[6]。因此,作为一种替代工艺,许多研究人员提出了从含三价铬(Cr 3 +)离子的电解槽中电沉积金属铬合金(例如 Co e Cr 和 Ni e Cr 合金 [7]、Fe e Cr 合金 [8] 和 Fe e Cr e Ni 合金 [9])。然而,众所周知,电沉积的电流效率受到很大限制,因为 Cr/Cr 3 + 的标准电极电位为 0.937 V(vs. Ag/AgCl/饱和 KCl),远不如铁族金属(例如 Ni/Ni 2 +、Co/Co 2 + 和 Fe/Fe 2 +)的电位高 [10]。在从水溶液中电沉积次贵金属的过程中,随着电流密度的增加,阴极附近的pH值升高[11]。pH值升高的原因是高电流密度下氢气析出速率高,导致阴极附近的H+离子消耗速率高。因此,在简单的水溶液中,Cr3+离子在高电流密度下会与阴极附近的六个水分子形成复合物[Cr(H2O)6]3+。具体而言,这些[Cr(H2O)6]3+离子会在酸性pH区(pH > 4.5)通过羟桥反应形成羟基桥接胶体聚合物[12,13]。阴极附近的这种胶体聚合物会抑制金属铬的电沉积。因此,通常在水溶液中加入甘氨酸、尿素或 N,N-二甲基甲酰胺 (DMF) 等络合剂来抑制 [Cr(H 2 O) 6 ] 3 + 离子的形成。在这些络合剂中,DMF 是众所周知的在金属电沉积过程中减少氢析出的有效络合剂 [14]。之前有几种
取样容器 配备流通池和取样龙头的潜水泵。 深度探测器 样品容器(用于 TSS 的塑料容器) 预清洁的样品容器(用于金属的塑料容器;如果需要分析汞或六价铬,可能需要额外的玻璃容器) 实验室提供的试剂水(不含金属) 塑料(聚乙烯)可重新密封的食品储藏袋 塑料(聚乙烯)垃圾袋 专用的干净冷却器(带冰块)(金属样品) 一次性手套(不含滑石粉) 蒸馏水 带冰块的冷却器(TSS 样品)