摘要 量子点细胞自动机 (QCA) 代表着一种新兴的纳米技术,有望取代当前的互补金属氧化物半导体数字集成电路技术。QCA 是一种极具前景的无晶体管范式,可以缩小到分子级,从而促进万亿级器件集成和极低的能量耗散。可逆 QCA 电路具有从逻辑级到物理级的可逆性,可以执行计算操作,耗散的能量低于 Landauer 能量极限 (kBTln2)。逻辑门的时间同步是一项必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了八个新的逻辑和物理可逆时间同步 QCA 组合逻辑电路的设计和仿真。这里介绍的新电路设计通过使用本质上更对称的电路配置来缓解由逻辑门信息不同步引起的时钟延迟问题。模拟结果证实了所提出的可逆时间同步 QCA 组合逻辑电路的行为,该电路表现出超低能量耗散并同时提供准确的计算结果。
Blaise Ravelo 1,(成员,IEEE),Samuel Ngoho 2,Glauco Fontgalland 3,(高级会员,IEEE),Lala Rajaoarisoa 4,(成员,IEEE),Wenceslas Rahajandraibe 5 IEEE),Fayu Wan 1,(成员,IEEE),Junxiang GE 1,(IEEE副成员)和SébastienLalléchère7,(成员,IEEE)1电子和信息工程学院Nanjing信息科学与技术大学NANJING 210044,ELANGIED(APSIS 2 PARAGE),75017, Laboratory, Federal University of Campina Grande, Campina Grande 58429, Brazil 4 IMT Lille Douai, Research unit in computer science and automatic, University of Lille, 59000 Lille, France 5 Aix-Marseille Univ, Univ Toulon, CNRS, IM2NP, Electromagnetic Compatibility Laboratory, Missouri University of Science and Technology, Rolla, MO 65401, USA 7 Institut帕斯卡(Pascal
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Frank Elliot Sahoa 5,Glauco Fontgalland 6,IEEE 高级会员,Hugerles S. Silva 7,8,IEEE 会员,Samuel Ngoho 9,Fayrouz Haddad 2,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学(NUIST),电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学,CNRS,土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系, 01026 Zilina, 斯洛伐克 4 电信系,电气工程和计算机科学学院,VSB 俄斯特拉发技术大学,70800 俄斯特拉发,捷克共和国 5 Laboratoire de Physique Nucléaire et Physique de l'Environnement (LPNPE), Université d'Antananarivo, Antananarivo 101, Madagascar 6 联邦大学Campina Grande,应用电磁和微波实验室,Campina Grande/PB,58429,巴西 7 Instituto de Telecomunicações and Departamento de Eletrónica,Telecomunicações e Informática,Universidade de Aveiro,Campus Universitário de Santiago,3810-193 Aveiro,葡萄牙 8 巴西利亚大学电气工程系(UnB),联邦区70910-900,巴西 9 法国系统科学协会 (AFSCET),巴黎 75013,法国
摘要。高温超导体(HTS)非常有吸引力的高效和高能量密度功率设备。它们与需要轻型和紧凑型机器(例如风力发电)的应用特别相关。在这种情况下,为了确保超导器机器的正确设计及其在电力系统中的可靠操作,那么开发可以准确包含其物理功能但也可以正确描述其与系统的相互作用的模型很重要。为了实现这样一个目标,一种方法是共同模拟。这种数值技术可以通过有限元模型(FEM)带来机器的细几何和物理细节,同时处理整个系统的操作,该系统包含了机器,以及由外部电路代表的电网的子集。当前工作的目的是在涉及超导组件时使用这种数值技术。在这里,提出了一个案例研究,该案例研究涉及通过整流器及其相关滤波器与直流电流(DC)网络耦合到直流电流(DC)网络的15 MW杂交超导同步发电机(HTS转子和常规定子)。与风能应用有关的案例研究允许在使用与HTS机器的共同模拟时抓住技术问题。发电机的FEM是在商用软件COMSOL多物理学中完成的,该商品通过内置功能模拟单元(FMU)与电路模拟器Simulink进行交互。因此,它是在本研究中,引入了最新版本的最新版本J-与均化技术结合使用的配方,与T -A公式相比,计算时间更快。分布式变量和全局变量,例如前者和电压,电流,电磁扭矩以及后者的功率质量的电流密度,磁通量密度和局部损失,并进行了比较。这个想法是在计算速度,准确性和数值稳定性的标准下找到最适合的组合FEM电路。
电子设备的尺寸正在接近原子大小,这迫使人们制定新的指导方针来应对 22 纳米以下设计的挑战。随着芯片制造深入纳米领域,工艺变异缓解和辐射硬度成为相关的可靠性要求。受工艺变异影响的集成电路可能无法满足某些性能或功率标准,从而导致参数产量损失并需要重新设计几个步骤 [1]。传统上,软错误 (SE) 是由来自太空或地面辐射的高能粒子与硅之间的相互作用引起的 [2]。然而,技术缩放引入了电荷共享现象和脉冲猝灭 [3]。此外,工艺变异会改变线性能量传输 (LET),从而引发软错误。其后果是暂时的数据丢失,甚至在地面层面也会导致系统行为出现严重故障。
Blaise Ravelo 1,IEEE 会员,Mathieu Guerin 2,IEEE 会员,Jaroslav Frnda 3,4,IEEE 高级会员,Lala Rajaoarisoa 5,IEEE 会员,以及 Wenceslas Rahajandraibe 2,IEEE 会员 1 南京信息工程大学电子信息工程学院,江苏南京 210044 2 艾克斯-马赛大学、法国国立科学研究院、土伦大学,IM2NP UMR7334,13007 马赛,法国 3 日利纳大学交通运输与通信运营与经济学院定量方法与经济信息学系,01026 日利纳,斯洛伐克 4 奥斯特拉发 VSB 技术大学电气工程与计算机科学学院电信系,70800 奥斯特拉发,捷克共和国 5 IMT Nord Europe,里尔大学,数字系统中心,F-59000 里尔,法国
摘要 — 本文展示了一种使用垂直自旋转移力矩磁隧道结的新型磁传感器。传感元件呈圆柱形,直径为 50 纳米,据我们所知,是迄今为止报道的最小的磁传感器之一。本文介绍了传感元件和相关信号处理电子设备的工作原理,它们提供与外部磁场成比例的信号。详细介绍了实验结果,并将其与最先进的商用集成磁传感器以及基于磁隧道结的具有可比尺寸的已发布的磁阻传感器进行了比较。所开发的传感器的测量灵敏度为 1.28 V/T,动态范围达到 80 mT。测得的噪声水平为 21.8 µT/√Hz。描述并比较了所提出的传感器的两种不同工作原理,一种基于时间数字转换器,另一种基于脉冲宽度调制信号。这两种方法都只需要标准的微电子元件,适用于将传感元件与其调节电子设备单片集成。需要对传感元件以及调节电子器件进行后续改进,以进一步降低噪声水平。传感元件及其调节电子器件与磁性随机存取存储器制造中已经使用的制造工艺兼容。这为大规模生产开辟了道路,并满足了消费电子、汽车、工业传感、物理实验或医疗设备等各种市场的需求。
摘要 - 先前的研究表明,只要SC期间消散的能量略低于给定阈值(所谓的临界能量),SI设备可以维持大量的短路(SC)事件。在本文中,我们表明,对于SIC MOSFET来说,这不一定是正确的,这只能承受一些此类SC事件。对重复性短路事件的这种低鲁棒性与氧化物中累积的载体注入和泄漏电流导致的栅极降解有关。为了确保在大量SC事件上进行安全操作,我们引入了一个新参数:“重复的临界能量”,该参数对应于SC能量足够低,以避免温度过高,以限制SC事件期间的瞬态门泄漏电流。在此重复的SC能量值之下,SIC设备能够维持大量SC事件(超过1000)。1。简介
1:30 pm 10-1 :(被邀请)类似基于变压器的语言模型(被邀请)类似类似的硬件加速器»Geoffrey W. Burr(美国)1,Hsinyu Tsai(美国)1,IEM Boybat(瑞士)博士(瑞士)2,William A. Simon(Switzerland) Vasilopoulos(瑞士)2,Pritish Narayanan博士(美国)1,Andrea Fasoli博士(美国)1,Kohji Hosokawa先生(日本)3(日本)3,Manuel Lealoo(瑞士)博士(瑞士)2国家)1,查尔斯·麦金(Charles Mackin)(美国)1,埃琳娜·费罗(Elena Ferro)(瑞士)2,Kaoutar El Maghraoui博士(美国)4,Hadjer Benmeziane博士(瑞士)2,Timothy Philicelli(美国)5,美国的Timothy Philicelli博士(瑞士) ,Shubham Jain博士(美国)4,Abu Sebastian博士(瑞士)2,Vijay Narayanan博士(美国)4(1。IBM研究-Almaden,2。IBM Research Europe,3。IBM东京研究实验室,4。 IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM东京研究实验室,4。IBM T. J. Watson Research Center,5。 IBM Albany Nanotech)IBM T. J. Watson Research Center,5。IBM Albany Nanotech)IBM Albany Nanotech)
3 Cruz-Garcia 没有解释据称读过的圣经段落——来自保罗致罗马人的书信——与本案具体事实之间缺乏联系的原因。在他的辩护状中,Cruz-Garcia 声称罗马书是相关的,因为它“包括对死刑的讨论。参见罗马书 13,6:23。”但是,虽然这两段经文都提到了惩罚和死亡,但它们都与案件的具体事实无关。参见罗马书 13:3-4 (NKJV)(“因为作官的,原不是叫善行惧怕,乃是叫恶行惧怕。你想不怕掌权的吗?你们要行善,就必得他的称赞。因为他是神的用人,是叫你们行善的。你们若作恶,却要惧怕;因为他不是空空带剑;他是神的用人,是报应的,要向那作恶的人施行愤怒。”);同上。 6:23 (NKJV)(“因为罪的工价乃是死;惟有神的恩赐,在我们的主基督耶稣里,乃是永生。”)。