模拟电路的设计自动化在设计空间大、电路规范之间复杂的相互依赖关系以及资源密集型模拟方面提出了重大挑战。为了应对这些挑战,本文提出了一个创新框架,称为电路图探索器 (GCX)。利用图结构学习和图神经网络,GCX 能够创建一个代理模型,该模型有助于在半监督学习框架内有效探索最佳设计空间,从而减少对大型标记数据集的需求。所提出的方法包括三个关键阶段。首先,我们学习电路的几何表示并用技术信息丰富它以创建一个综合特征向量。随后,将基于特征的图学习与少样本和零样本学习相结合,增强了对未见电路预测的普遍性。最后,我们介绍了两种算法,即 EASCO 和 ASTROG,它们与 GCX 集成后可优化可用样本以产生符合设计者标准的最佳电路配置。通过使用 180 nm CMOS 技术中导出的参数对各种电路进行模拟性能评估,证明了所提方法的有效性。此外,该方法的通用性扩展到高阶拓扑和不同的技术节点,例如 65 nm 和 45 nm CMOS 工艺节点。
保护量子处理器中的脆弱信息需要某种形式的量子纠错 (QEC)。使用典型的“软件” QEC 技术(如表面代码 [1]),稳定单个逻辑量子位需要许多物理量子位,每个物理量子位通常实现为弱非线性振荡器。纠错和计算是通过一系列操作和测量实现的,这些操作和测量可以识别位翻转和相位翻转错误。另一种方法是直接在硬件中实现量子稳定器。在这里,纠错源自自然量子动力学,减少了对重复纠缠门、测量以及大量控制线和复杂的经典控制硬件的需要。在这种方法中,高度非平凡的哈密顿量会在巨大的希尔伯特空间内产生一个微小的受保护子空间。这两种方法都可以用错误抑制因子 Λ 来表征,Λ 是逻辑错误随系统规模减小的速率。当前 transmon 量子比特阵列每轮软件纠错所需的时间很长,这意味着 Λ 仅略大于 1 [2] 。在这项工作中,我们通过实验证明了使用哈密顿方法实现更大的 Λ ≳ 100 的潜力。代价是出现相对低能量模式,间隙 ≲ 1 GHz,这使得初始化具有挑战性;这些间隙可以通过参数优化提高。在使用硬件 QEC 构建可扩展逻辑量子比特之前,随着系统规模的增加,证明基于汉密尔顿工程的保护的有效性至关重要。在本信中,我们观察并量化了未受保护元素之间的稳定相互作用汉密尔顿量。我们进行具有局部通量控制的光谱测量,并观察汉密尔顿量中稳定剂项的特征。具体而言,我们发现能带相对于
Florin Udrea 是剑桥大学半导体工程教授兼高压微电子和传感器实验室负责人。Udrea 教授在期刊和国际会议上发表了 550 多篇论文。他在功率半导体器件和传感器领域拥有 150 多项专利(独特的发明)。Florin Udrea 教授于 2011 年至 2019 年期间担任剑桥企业董事会董事。由于他“对英国工程的杰出个人贡献”,他被授予皇家工程院银质奖章。2015 年,Florin Udrea 教授当选为皇家工程院院士。2018 年,Udrea 教授获得了多项重要奖项,包括皇家学会颁发的著名 Mullard 奖章。2021 年,Udrea 教授被《商业周刊》评为“年度学术企业家”。
摘要 — 近几年,人们系统地研究了低温互补金属氧化物半导体 (cryo-CMOS) 电路的开发,以实现操纵量子比特 (qubit) 状态所需的控制电子器件。可扩展性是量子计算从理论到实际应用发展的关键术语,CMOS 技术已被证明是实现令人垂涎的可扩展下一代量子计算机 (QC) 的有希望的候选技术。用于统一模拟和数字域的混合信号块在量子比特控制/读出系统的高效功能中起着关键作用,因此人们对其高性能电路实现的兴趣日益浓厚。这一项目的关键挑战是在低温下实现高效的低温操作,即接近 4 K 左右的量子比特,同时将功率要求保持在较低水平。本文概述并比较了迄今为止文献中提出的用于量子计算应用的低温 CMOS 数模转换器 (DAC) 和模数转换器 (ADC) 电路实现。还讨论了今后开发功能可扩展量子计算机所需的挑战和战略步骤。
Jens 1(IEEE高级成员),Masoud Babaie 2(成员,IEEE),Joseph C. Bardin 3,4(高级成员,IEEE),Imran Bashir 5(IEEE,IEEE),Gerard Billiot 6,Elena Blokhina Blokhina Blokina Blokina Blokina Blokina 5,7,8(IEEE,IEEE,SHAIEE),SHAI CHIA,IEEE,IEEE,IE,IE,IE,IE,IE,IEEE,IE,IEEE,IE,IE,IE,IE。 Ini 11,12,Isaac L. Chuang 11,13,14,Carsten Degenhardt 15,Dirk Englund 11,Lotte Geck 15,16,LoïckLeGuevel 3,6 3,6(同胞,IEEE,IEEE),RUONAN HAN 14(IEEE,IEEE),MOHAMM I. I. I. I. I. I. I.14.14.14.14.14.18(I.14)(18岁) 6,Jeremy M. Sage 20,Fabio Sebastian 2(IEEE高级成员),Robert Bogdan Staszewski 7.8(同胞,IEEE),Jules Stuart 11,12,13,Andrei Vladimirescu 21(IEEE)(IEEE) 70049德国Stuttgart 2 Delft技术大学,2628 CD DELFT,荷兰3马萨诸塞州阿默斯特大学,马萨诸塞州阿默斯特,美国马萨诸塞州01003美国4 Google LLC,Goleta,CA 93117 USA 94536 USA 94536 USA 94536美国6 Grenoble Alps Universition of Grenoble Alps,Cea-nimerniver,cea-electricering firnicer,f-38000 grenoble france,frane frane frane frane frane frane frane frane frane,爱尔兰都柏林8等labs,爱尔兰都柏林4号。多伦多大学电气工程系,M5S 3G4,加拿大10écolePolytechnique de Lausne,2002年,瑞士Neuchâtel,瑞士Neology,剑桥,马萨诸塞州剑桥市12美国12林肯大学,马萨诸塞州林肯大学林肯大学,马萨诸塞州马萨诸塞州,马萨诸塞州02139美国15个电子系统(EZEA-2),中央工程研究所,电子和分析学院,52428 CH,德国16电气工程和信息技术学院,RWTH AACHEN UNIVERPON伊萨卡,纽约州14853美国19个州关键实验室,科学与技术学院,科学技术学院。
在距离处生成和维持量子纠缠仍然是量子信息科学的核心挑战。一个主要目标是利用基于摩尔定律的相同的可扩展技术和技术来扩展量子设备,以扩展量子设备,以使高速公路和富裕度所需的系统大小。在这项工作中,我们扩展了Wan等。al。2020 [1]通过演示和操纵原子记忆中的长期自旋自由度,作为基于硅氮化硅(SIN)光子光子整合电路(PICS)的立即量表平台的一部分。钻石中的氮呈(NV)中心等固体中的原子记忆使远程纠缠的产生能够出色的广告[2],尽管缺乏光学稳定性,尤其是在纳米制造的结构中,尤其是在纳米构造的结构中,她的努力是缩放的努力。组IV颜色中心(例如硅接收中心(SIV)中心由于其对称性保护的光学稳定性而引起了人们的关注[3]。但是,声子浴有限的连贯性要求大多数SIV中心运行约100 mk。正如我们在这项工作中所证明的那样,锡空位(SNV)中心的尺寸较大轨道分裂(SNV)中心可以以1 K [4]的速度进行操作温度。
用于电池充电应用程序,CC-CV充电仍然是许多产品的必要设计。成本优化的CC-CV设计对于实现足够的充电性能而不产生大量成本是必要的。CC-CV控制回路为开关模式电源提供了模拟反馈。tl103wa在许多这些应用中都普遍存在,因为双重操作放大器和集成的分流电压参考的组合既具有成本又是空间效率,并且具有可接受的性能。本应用程序使用现有的Ti参考设计(PMP23224),并解释了每个反馈回路的派生和一些周围的反馈电路。使用两个下一代组件TL103WB和ISOM8110可以改进此参考设计的CC-CV反馈回路。TL103WB在上一代中改善了偏移,偏移漂移,带宽,静止电流和供应电压范围。此外,利用Ti的新光发光器,该设计可以随着时间的流逝而提高鲁棒性,在温度上的性能以及反馈回路的速度提高。这种设计对传统的CC-CV循环进行了一些修改。讨论和解释了这些差异及其替代方案。设计也是迭代创建的,并且可以通过更精确的被动组件克服设计时间的某些权衡,但是这会增加成本。
一阶和二阶电路不连续函数。由 RLC 组成的线性网络的积分微分方程的公式。RC 和 RL 电路的无源和阶跃响应。初始值和最终值。串联和并联 RLC 电路的无源和阶跃响应。
近年来,随着半导体器件在集成电路中的进一步小型化,功耗和数据传输带宽已成为难以逾越的障碍。光子集成电路 (PIC) 作为一种集成技术,在后摩尔时代具有广阔的前景,因其超高的处理速度和低功耗,在数据处理、通信和多样化传感应用方面具有更多优势。由于成熟的 CMOS 工艺,硅光子学被认为是实现 PIC 的一种令人鼓舞的解决方案。过去几十年来,硅 PIC 取得了巨大的增长。然而,仍然需要开发硅 PIC 来实现强大的芯片级系统和新功能。本文回顾了 PIC 的光子元件、功能块和新兴应用。常见的光子元件分为几个部分,包括片上光源、光纤到芯片耦合器、光子谐振器、基于波导的传感器、片上光电探测器和调制器。本综述中提到的 PIC 的功能模块是光子存储器和光子神经网络。最后,本文总结了有待进一步研究的新兴应用。
ECE 3040 微电子电路教授:Alan Doolittle 博士办公室:Pettit 208工作:(404) 894-9884 电子邮件:alan.doolittle@ece.gatech.edu(迄今为止,这是与我沟通的最佳方式)。学分:4 个讲座小时,字母,通过/不通过,审核 先决条件:ECE2030、ECE2040、Math2403、Chem1211 文本:两篇文本 微电子电路设计,第 5 版 Richard C. Jaeger 半导体器件基础,Robert F. Pierret 一些学生发现有用:使用 Microsim Pspice for Windows 进行原理图捕获,Herniter(或当前 3043 文本) 网络资源:官方课程网站:https://alan.ece.gatech.edu/index_files/ECE3040index.htm 注意:Canvas 和 Piazza 的一些使用主要用于学生之间的交流,但假设电子邮件和班级网站胜过任何 Canvas/Piazza 帖子。