此处列出的规格、重量、图示、颜色、设备清单、材料使用和型号参考均不保证真实或准确。实际有用载荷将根据飞机上安装的选项而有所不同。始终参考特定飞机的重量和平衡参数和数据进行飞行计划。本手册中包含的特定型号或其他产品的图片可能包含可选设备或非标准功能,即使可用也可能需要额外付费。某些可选设备需要第三方提供商单独付费订阅。您只能依赖与 Cirrus Design Corporation 签订的实际合同中包含的声明和陈述。引用的 Cirrus 商标归 Cirrus Industries, Inc. 或其子公司所有。所有其他品牌、产品名称、公司名称、商标和服务标记均为其各自所有者的财产。保留所有权利。©2020,CIRRUS DESIGN CORPORATION D/B/A CIRRUS AIRCRAFT。有关 Cirrus 及其产品的更多信息,请访问 cirrusaircraft.com。
此处列出的规格、重量、表示、颜色、设备清单、材料使用和型号参考均不保证或保证其真实或准确。实际有用载荷将根据飞机上安装的选项而有所不同。始终参考特定飞机的重量和平衡参数和数据进行飞行计划。本手册中包含的特定型号或其他产品的图片可能包含可选设备或非标准功能,即使可用也可能需要额外付费。某些可选设备需要第三方提供商单独付费订阅。您只能依赖与 Cirrus Design Corporation 签订的实际合同中包含的声明和陈述。引用的 Cirrus 商标归 Cirrus Industries, Inc. 或其子公司所有。所有其他品牌、产品名称、公司名称、商标和服务标记均为其各自所有者的财产。保留所有权利。©2020,CIRRUS DESIGN CORPORATION D/B/A CIRRUS AIRCRAFT。有关 Cirrus 及其产品的更多信息,请访问 cirrusaircraft.com。
此处列出的规格、重量、图示、颜色、设备清单、材料使用和型号参考均不保证真实或准确。实际有效载荷将根据飞机上安装的选项而有所不同。在制定飞行计划时,请务必参考特定飞机的重量和平衡参数和数据。本手册中包含的特定型号或其他产品的图片可能包含可选设备或非标准功能,即使可用也可能需要额外付费。某些可选设备需要第三方提供商单独付费订阅。您只能依赖与 Cirrus Design Corporation 签订的实际合同中包含的声明和陈述。引用的 Cirrus 商标归 Cirrus Industries, Inc. 或其子公司所有。所有其他品牌、产品名称、公司名称、商标和服务标记均为其各自所有者的财产。保留所有权利。©2020,CIRRUS DESIGN CORPORATION D/B/A CIRRUS AIRCRAFT。有关 Cirrus 及其产品的更多信息,请访问 cirrusaircraft.com。
1542 D Teledyne Continental IO-550-N MT-螺旋桨 MTV-14-D/195-30b Cirrus Design Corporation SR22 Cirrus Design Corporation 单/双排气
处理器CIRRUS标准计算节点每个包含两个2.1 GHz,18核Intel Xeon E5-2695(Broadwell)串联处理器。这些处理器中的每个内核都支持2个硬件线程(HyperThreads),默认情况下是启用的。CIRRUS上的标准计算节点在两个处理器之间具有256 GB的内存。cirrus gpu计算节点每个都包含两个2.4 GHz,20核Intel Xeon Gold 6148(Skylake)串联处理器。这些处理器中的每个内核都支持2个硬件线程(HyperThreads),默认情况下是启用的。节点还包含四个NVIDIA TESLA V100-PCIE-16GB(VOLTA)GPU加速器连接到主机处理器,并且通过PCIE彼此相互连接。
图片列表 图 1:USB 适配器 ................................................................................................................................................................ 8 图 2:桌腿组件 ................................................................................................................................................................ 9 图 3:连接主显示器支架 ................................................................................................................................................ 11 图 4:将电缆连接到 23 英寸主显示器的背面 ............................................................................................................. 11 图 5:将主显示器支架固定到底座 ............................................................................................................................. 11 图 6:将电缆连接到 AUX 显示器 ............................................................................................................................. 12 图 7:将 AUX 显示器固定到底座 ............................................................................................................................. 12 图 8:操纵杆位置概览 ............................................................................................................................................. 13 图 9:将操纵杆固定到底座 .............................................................................................................................
摘要 渗透性测量是复合材料预浸料中排气通道有效性的有力指标。这些排气通道的有效性与加工后的复合材料层压板内的空隙率直接相关。东丽先进复合材料的目标是比较两种渗透性测试,并确定哪一种更可靠、更准确、更经济。第一种渗透性测试方法是由东丽先进复合材料的客户 Cirrus Aircraft 设计的 Cirrus 方法。第二种测试是 ASTM D8132,这是渗透性测试的标准方法。此外,东丽试图使用更可行的渗透性测试选项来研究停留时间对三种不同预浸料产品渗透性的影响。在项目的比较阶段,ASTM 和 Cirrus 测试都运行了 5 次。在这些测试中记录了不同的修改和技术,以供将来考虑如何提高测试效率。Cirrus 数据得出的平均渗透性值为 3.98 x 10 -14 m 2;而 ASTM 测试得出的平均渗透率值为 7.4 x 10 -12 m 2 。两个测试都得到了可重复的数据。Cirrus 数据的标准差为 1.5 x 10 -14 m 2 ,而 ASTM 数据的标准差为 1.8 x 10 -12 m 2 。这两个数据集之间的数量级差异被确定为每个测试的样品制备方法不同所致。还使用了定性分析来确定哪种测试更可行,这取决于设置的简易性、总运行时间、成本以及每次测试使用的材料量。与 Cirrus 测试相比,ASTM 测试的准备和进行时间平均减少了两个小时,每个样品使用的材料减少了 45 in2。准备和运行测试的成本也减少了约 3550 美元。由于运行 ASTM 测试所需的资源很少并且它已获得标准测试方法的认证,因此 ASTM 测试被确定为更高效、更可行的选择。东丽工程师和技术人员将改进方法和技术写入标准操作程序,以便更有效地运行每项测试,以供将来使用和开发。然而,由于 COVID-19 疫情,超时实验被取消,所有进一步的工作也终止了。关键词:材料工程、复合材料、预浸料、层压板、高压釜外、仅真空袋、环氧树脂、碳纤维、固化、空隙、超时、渗透性、ASTM D8132
飞机尾迹是飞机在温度约为 −40°C 及以下时在对流层上部排放的产物,是人类对地球气候最明显的影响之一。最初,飞机尾迹的微物理特性与自然卷云不同,但随着时间的推移,飞机尾迹会失去形状并扩散,变得与自然卷云几乎无法区分,不仅在视觉上,而且在微物理特性上也是如此。飞机尾迹是消失还是发展成飞机尾卷云取决于环境相对湿度相对于冰。飞机尾迹将在充满冰的大气中持续存在。在过饱和状态下,冰晶会形成并提取过量的环境水蒸气。但是,线状飞机尾迹向卷云的转变尚不十分清楚,气候模型也没有很好地描述它。凝结尾迹的形成可以用施密特-阿普尔曼准则 (SAC) 1 来描述,这是一个简单的方程,它与大气温度和气压、燃料能量含量、排出的水蒸气量以及飞机的整体推进效率有关。SAC 预测可见凝结尾迹形成条件的可靠性已得到证实。
前10名同行评审出版物:Bier,A。和Burkhardt,U。(2022)。射流和涡流期参数化的微物理过程对围栏性质和辐射强迫的影响。地球物理研究杂志:大气,127,E2022JD036677。https://doi.org/10.1029/2022JD036677 Verma,P。,&Burkhardt,U。 (2022)。 cirrus中的缩进形成:cirrus云特性对围栏形成的影响的图标-lem模拟。 大气化学与物理学,22(13),8819–8842。 https://doi.org/10.5194/acp-22-8819-2022 Lee,D.S.,Fahey,D.W.,Skowron,A.,Allen,M.R.,M.R.,Burkhardt,U. (2021)。 全球航空对2010年至2018年人为气候强迫的贡献。 大气环境,244,117834。https://doi.org/10.1016/j.atmosenv.2020.117834 Stevens,B.,Accuistapace,C.,Hansen,A. (2020)。 大型涡流和防暴模型的附加值,用于模拟云和降水。 日本气象学会杂志,98(2),395–435。 https://doi.org/10.2151/jmsj.2020- 021。 Bock,L。和U. Burkhardt,2019年:围栏cirrus辐射强迫未来的空中交通。 Atmos。 化学。 Phys。,19,8163–8174,https://doi.org/10.5194/acp-19-8163-2019。 Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。 (2015):缩小图的微物理途径,J。Geophys。 (2011)。 Q. J. Roy。https://doi.org/10.1029/2022JD036677 Verma,P。,&Burkhardt,U。(2022)。cirrus中的缩进形成:cirrus云特性对围栏形成的影响的图标-lem模拟。大气化学与物理学,22(13),8819–8842。https://doi.org/10.5194/acp-22-8819-2022 Lee,D.S.,Fahey,D.W.,Skowron,A.,Allen,M.R.,M.R.,Burkhardt,U.(2021)。全球航空对2010年至2018年人为气候强迫的贡献。大气环境,244,117834。https://doi.org/10.1016/j.atmosenv.2020.117834 Stevens,B.,Accuistapace,C.,Hansen,A.(2020)。大型涡流和防暴模型的附加值,用于模拟云和降水。日本气象学会杂志,98(2),395–435。https://doi.org/10.2151/jmsj.2020- 021。 Bock,L。和U. Burkhardt,2019年:围栏cirrus辐射强迫未来的空中交通。 Atmos。 化学。 Phys。,19,8163–8174,https://doi.org/10.5194/acp-19-8163-2019。 Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。 (2015):缩小图的微物理途径,J。Geophys。 (2011)。 Q. J. Roy。https://doi.org/10.2151/jmsj.2020- 021。Bock,L。和U. Burkhardt,2019年:围栏cirrus辐射强迫未来的空中交通。Atmos。化学。Phys。,19,8163–8174,https://doi.org/10.5194/acp-19-8163-2019。Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。 (2015):缩小图的微物理途径,J。Geophys。 (2011)。 Q. J. Roy。Burkhardt,U.,L。Bock和A. Bier,2018年:通过减少飞机烟灰数排放来减轻围栏气候影响。(2015):缩小图的微物理途径,J。Geophys。(2011)。Q. J. Roy。Q. J. Roy。NPJ气候和大气科学,第1页。 1-7。 https://doi.org/10.1038/s41612-018-0046-46-4Kärcher,B.,U.Burkhardt,U.,Bier,A.,Bock,L。和Ford,I。J.res。,120,7893–7927,https://doi.org/10.1002/2015JD023491/2015JD023491 Burkhardt,U.全球辐射性强迫从围栏卷曲中强迫。自然气候变化,1(1),54-58。https://doi.org/10.1038/nclimate1068Kärcher,B。和U. Burkhardt,2008年:用于通用循环模型的Cirrus云方案。陨石。Soc。,134,1439-1461,https://doi.org/10.1002/qj.301航空气候变化研究启动(ACCRI)的首席作者出版一份关于前进方向的报告,基于对研究差距和不确定性领导作者的审查:G.P. G.P.Brasseur,美国NextGen联合计划和发展办公室联邦航空局(FAA),国家航空航天局(NASA)(NASA),国家海洋与大气管理局(NOAA)(NOAA),2008年。
我们维护的网站地址为 www.cirrus.com。我们不会将我们网站上的信息作为本 10-K 表年度报告的一部分或通过引用将其纳入其中。我们在向美国证券交易委员会 (SEC) 以电子方式提交或提供此类材料后,会尽快通过我们的网站免费提供 10-K 表年度报告、10-Q 表季度报告和 8-K 表当前报告以及这些报告的修订版。我们还定期在我们的网站上发布其他重要信息,包括专门针对投资者或发布在我们网站“询问 CEO”部分的信息。我们希望我们网站的投资者关系部分成为向整个证券市场传播信息的公认分发渠道。要免费获得 10-K 表年度报告的副本,请将您的书面请求转发至 Cirrus Logic, Inc.,收件人:投资者关系部,800 W. 6 th Street, Austin, Texas 78701,或发送电子邮件至 Investor@cirrus.com。此外,SEC 的网站为 www.sec.gov,其中包含 Cirrus Logic 以电子方式向 SEC 提交的报告、代理和信息声明。