摘要:传统上,保护关注高危物种和相对完整的生态系统。随着人口和我们的全球影响力的增长,更多的物种和生态系统处于危险之中,而完整的生态系统仍然存在,城市化是主要的促成因素。城市及其居民将留在这里,城市化的普遍性通常在高保护价值的地区附近,需要重新考虑城市生态系统和城市绿色空间的保护价值。我们的目的是探索此类行动的实际方面。城市生态系统再生将要求将城市生态系统再生策略纳入整体保护政策。在这里提倡的城市生态系统再生的新型范式,最大程度地提高了城市空间支持生物多样性的能力,同时减少了不良结果并增强了人类的福祉。城市加剧生物学入侵,气候变化和其他生态系统降级因素的潜力在制定城市空间保护策略时需要特别关注,这是由于预测的城市在全球范围内进一步传播而至关重要的。
使用条款本文从哈佛大学的DASH存储库下载,并根据适用于其他已发布材料(LAA)的条款和条件提供,如https://harvardwiki.atlassian.net/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/wiki/ngy/ngy/ngy5ngy5ndnde4zjgzndnde4zjgzntc5ndndndgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgizzmgiamsfyytytewy
气候变化需要大规模部署碳捕获和存储(CCS)。最近的计划表明,到2030年,CCS的容量增加了八倍,但CCS扩展的可行性却是有争议的。使用CCS和其他政策驱动技术的历史增长,我们表明,如果计划在2023年至2025年之间两倍,并且其故障率降低了一半,则CCS到2030年可能会达到0.37 GTCO 2年-1,比大多数1.5°C较低,但比大多数2°C途径更高。保持轨道至2°C将要求在2030-2040 ccs加速至少与2000年代的风力发电一样快,并且在2040年之后,它的增长速度比1970年代至1980年代的核能快。只有10%的缓解途径符合这些可行性限制,几乎所有这些途径描绘了<600 GTCO 2 2100捕获和存储。通过假设CCS计划的失败和生长的速度不如烟气脱硫的速度大约是这一数量的两倍,从而放松约束。
本研究基于定量和定性分析方法构建的方法论框架,遵循 Pickering 和 Byrne (2014) 提出的步骤,进行系统的文献综述和文献收集设计,重点分析人工智能 (AI) 时代高等教育的想象未来。我们的研究旨在回答以下研究问题:(1)人工智能时代高等教育的想象未来是什么?(2)哪些因素影响高等教育教学过程与人工智能之间的联系?(3)学生和教师改进数据库和开发 ChatGPT 会产生什么影响?作者探讨了人工智能在西方世界当前大学治理安排和精神背景下的影响。深入分析与人工智能系统的出现相关的一些已确定的主要挑战、机遇和风险相一致,例如技术监控或学术界对人工智能和大型语言模型(如 ChatGPT)的普遍访问,并提出了在高等教育中明智地选择和使用人工智能解决方案进行学习和教学的论据。本研究采用的分析框架还用于总结该领域研究的新方向,以恢复大学的主导地位,提高学生、学者和公众的高等教育质量。
为了增强轨道几何维护计划并降低基础设施成本,准确预测由镇流器和子级别的循环负载引起的累积永久性轨道变形(沉降)对于铁路基础设施管理者至关重要。本文提出了一种新的方法,可以基于一项用于评估短期和长期轨道性能的混合方法研究的广泛参数研究,以降低计算成本来预测长期结算。将各种机器学习技术进行比较并采用用于开发预测模型,这些模型使用归档的压载轨道演示者的测量结果进行了验证。使用多个指标评估每个模型的性能和准确性,并进行了敏感性分析以识别有影响力的解释变量。值得注意的是,开发的随机森林模型与现场测量的定居数据表现出了良好的一致性。这种方法弥合了差距是数值模拟和经验数据,从而对永久轨道变形有了改进的整体理解。该方法具有在铁路轨道维护和更新管理的计算决策支持系统中实施的潜力。
动物在其胃肠道中拥有复杂的细菌群落,它们与之共享相互作用。这些对宿主的相互作用赠款的众多影响包括对免疫系统的调节,防御病原体入侵的防御,原本无法消化的食物的消化以及对宿主行为IOR的影响。暴露于压力源,例如环境污染,寄生虫和/或捕食者,可以改变肠道微生物组的组成部分,可能影响宿主 - 微生物组相互作用,这些相互作用可以在宿主中表现出来,例如代谢功能障碍或炎症。然而,很少检查野生动物伴侣中肠道微生物群的变化。因此,我们量化了野生银行是否居住在污染环境中,存在环境放射性核素的区域是否表现出肠道微生物群的变化(使用16S扩增子测序)以及使用转录组学的组合方法在宿主健康中发生变化,并使用转录组学的组合方法,组织学构成组织的组织学分析,对短篇小说和较短的细胞酸性酸性酸性酸性酸性酸性酸性酸性酸性。与居住在受污染区域的动物中肠道微生物群发生变化的同时,我们发现宿主中肠道健康不良的证据,例如杯状细胞降低,可能会削弱
夏尔默斯技术大学的生命科学系,SE412 96哥德堡,瑞典B天津工业生物技术研究所,中国科学学院,蒂安金300308,pr中国C中国生命科学学院,中国科学学院,北欧科学学院,北北方,北方,北部。深圳高级技术研究所,中国科学院,深圳518055,中国Pr中国e工程生物学主要实验室低碳工业研究所,工业生物技术学院,中国科学院,中国科学院DK2200哥本哈根,丹麦G Novo Novo Nordisk生物维护基金会,丹麦技术大学DK2800 Kongens Lyngby,丹麦
分数量子霍尔 (FQH) 相是由于强电子相互作用而出现的,其特征是任意子准粒子,每个准粒子都具有独特的拓扑参数、分数电荷和统计数据。相反,整数量子霍尔 (IQH) 效应可以从非相互作用电子的能带拓扑中理解。我们报告了所有 FQH 和 IQH 跃迁中临界行为的令人惊讶的超普适性。与预期的状态相关临界指数相反,我们的研究结果表明,对于分数和整数量子霍尔跃迁,临界标度指数 κ = 0.41 ± 0.02 和局域长度指数 γ = 2.4 ± 0.2 相同。从中,我们提取了动力学指数 z ≈ 1 的值。我们已经在超高迁移率三层石墨烯器件中实现了这一点,其中金属屏蔽层靠近传导通道。在之前的研究中,由于在传统半导体异质结构中 κ 的测量值存在显著的样本间差异,而长程关联无序占主导地位,因此在各种量子霍尔相变中观察到的这些全局临界指数被掩盖了。我们表明,稳健的标度指数在短程无序关联的极限下是有效的。
从经济角度来看,耐久性是热冲压模具的关键因素。通过沉积新材料而不是更换来翻新模具是一种降低成本的有效方法。为此,通过定向能量沉积的方式将一种新开发的马氏体时效钢 (NMS) 熔覆在热作工具钢上。经过优化的回火后,对熔覆的 NMS 进行高温暴露以检查抗软化性能。利用光学显微镜 (OM)、X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、俄歇电子能谱 (AES) 和透射电子显微镜 (TEM) 的组合,系统地表征了材料的微观结构演变。熔覆钢中的沉淀物被鉴定为 Laves 相。该相的粗化被认为是钢在高温下热软化的主要原因。还使用修订的 Langer-Schwartz-Wagner (LSW) 模型模拟了粗化行为,该模型与实验观察结果非常吻合。此外,成功应用了沉淀强化数学模型来评估钢的软化行为。该模型可用于预测所研究的工具钢在高温使用过程中的硬度/强度变化。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
这项研究介绍了一种创新的多学科设计方法,用于高度导电和轻巧的针脚的散热器,利用石墨烯技术的优势。主要目的是优化电动汽车(EV)中基于硅碳化物(SIC)的逆变器的热管理。在模块上,在模块上进行了综合分析,包括扫描电子显微镜(SEM)和能量色散X射线光谱(EDS),在模块上进行了全面的分析。采用3D结合传热(CHT)方法的详细流体动力学模型用于评估与冷却液接触的SIC功率开关的热行为。多学科分析最初是在基于铝制的散热器上实施的,经过实验验证,随后与石墨烯进行了比较。与热链设计中的石墨烯的整合表现出显着的改进,包括在6 L/min min流体流量的情况下,传热系数(HTC)增加了24.4%,热电阻(接收到流体)降低了19.6%。因此,与铝制版本相比,基于石墨烯的散热器中的SIC芯片的温度升高11.5%。通过采用石墨烯而不是传统金属实现的SIC逆变器的冷却解决方案的改进,作为概念证明。这表示在性能和功率密度之间的关键平衡方面向前迈出了一步。