纳税人保护条款已在上文列出。此外,该法案还要求弗吉尼亚州矿业、矿产和能源部以及环境正义委员会准备一份报告,以确保 VCEA 不会给少数族裔和历史上处于不利地位的社区带来过重的负担。它包括确保可靠性得到保护的语言。它还制定了联邦的政策,即在考虑新的可再生能源项目、能源计划和职业培训时考虑低收入地区、化石燃料基础设施附近的地区和历史上处于不利地位的社区。最后,它要求公用事业公司咨询清洁能源咨询委员会,了解如何最好地向低收入客户介绍他们的太阳能选择。
摘要:本研究探索了EEG信号中突出的信号,并提出了一种基于EEG信号识别情绪体验和心理状态的有效方法。首先,使用PCA将数据的维度从2K和1K降低到10和15,同时提高了性能。然后,针对构建基于EEG的识别方法的高质量训练数据不足的问题,提出了一种多生成器条件GAN,通过使用不同的生成器来生成覆盖实际数据更完整分布的高质量人工数据。最后,为了进行分类,引入了一种新的混合LSTM-SVM模型。所提出的混合网络在EEG情绪状态分类中获得了99.43%的整体准确率,在识别心理状态方面表现出色,准确率达到99.27%。所介绍的方法成功地结合了机器学习的两个突出目标:高精度和小特征尺寸,并展示了在未来分类任务中利用的巨大潜力。
神经科学的最新进展强调了多模式医学数据在研究某些病理和了解人类认知方面的有效性。但是,获得一组不同的模态的完整集受到各种因素的限制,例如长期获取时间,高检查成本和伪影抑制。此外,神经影像数据的复杂性,高维度和异源性仍然是有效地利用现有随机扫描的另一个关键挑战,因为不同机器通常对相同方式的数据进行了不同的测量。显然需要超越传统成像依赖性过程,并从源中综合解剖学特定的目标模式数据。在本文中,我们建议学习使用新型CSCℓ4NET跨内部和模式内变化的专用特征。通过特征图和多元典范适应性中的模态数据的初始统一,CSCℓ4净4净促进了特征级别的相互转换。正定的riemannian歧管 - 惩罚数据限制项进一步使CSCℓ4NET可以根据变换的特征重新构建缺失测量值。最后,最大化ℓ4 -norm沸腾到计算上有效的优化问题。具有较大的实验可以验证我们的CSCℓ4NET的能力和鲁棒性与Multiple数据集中的最新方法相比。
Springer Cham Heidelberg New York Dordrecht London©Springer International Publishing Switzerland 2016这项工作均具有版权。所有权利都是由出版商保留的,无论材料的全部或部分都涉及,都可以涉及翻译,重印,重新使用,插图,朗诵,广播,对微型企业或以任何其他物理方式或任何其他物理方式复制,以及以任何其他物理方式,以及传播或信息存储和检索,电子适应,计算机软件,相似或相似的方法,或者现在已知或不知情的方法。使用一般描述性名称,注册名称,商标,服务标记等。在本出版物中,即使在没有特定陈述的情况下,这种名称也不受相关的保护法律和法规的限制,因此也没有暗示,因此可以免费使用。出版商,作者和编辑可以肯定地假设本书中的建议和信息在出版之日被认为是真实而准确的。关于本文包含的材料或可能犯的任何错误或遗漏,发布者,作者或编辑都没有提供明示或暗示的保修。
DRDO总监,董事,DRDO实验室的质量负责人,行业和其他利益相关者的专家也参加了会议。它为国防领域的主要利益相关者提供了一个共同的平台,以分享他们的观点,并旨在实现自力更生和出口的双重目标。结论在两个会议上举行,即。“改善国防制造中的自我依赖和质量文化”和“国防与航空航天中的质量保证”。行业,政府质量保证机构和用户服务的专家在会议期间提供了他们的观点。
气候变化是对生物多样性和生态系统功能的最严重威胁之一。当前的温度变化速率主要由化石燃料的人类组合驱动,远远超过至少10,000年(较低的PleistoCene)和更长的时间(IPCC,2014年)。最后一次重大的气候变化事件引起了巨大的灭绝,导致许多大型四足动物突然灭亡,包括诸如羊毛猛mm,羊毛犀牛,毛s,牛皮龙,巨型麋鹿,巨型麋鹿,saber齿的虎和dire虎[1]等特征物种[1]。在先前的气候变化事件时,景观之间的主要差异之一是当前的景观是,生物圈现在由单个物种Homo Sapiens Sapiens主导,该物种已深刻改变并简化了许多陆地和水生生态系统。因此,除了气候变化外,自然生态系统还因其他人类引起的变化而改变了,包括森林砍伐,富营养化,过度收获,非本地物种的引入和各种类型的污染。因此,物种和种群受到多种压力源的挑战,使他们更难适应气候制度的快速变化。人们可以强烈认为我们不再生活在全新世,而是在人类世[2,3]。
将几何模型拟合到离群污染数据上是可证明的难点。许多计算机视觉系统依靠随机抽样启发式方法来解决稳健拟合问题,但这种方法不提供最优性保证和误差界限。因此,开发新方法来弥合成本高昂的精确解决方案与无法提供质量保证的快速启发式方法之间的差距至关重要。在本文中,我们提出了一种用于稳健拟合的混合量子经典算法。我们的核心贡献是一种新颖的稳健拟合公式,它可以解决一系列整数程序并以全局解或误差界限终止。组合子问题适合量子退火器,这有助于有效地收紧界限。虽然我们对量子计算的使用并没有克服稳健拟合的根本难点,但通过提供误差界限,我们的算法是对随机启发式算法的实际改进。此外,我们的工作代表了量子计算在计算机视觉中的具体应用。我们展示了使用实际量子计算机(D-Wave Advantage)和通过模拟 1 获得的结果。
安全性和隐私性是现代通信系统的关键方面 [1]。经典的窃听信道最早由 Wyner [2] 提出,用于模拟存在被动窃听者时的通信。另一方面,Merhav 和 Shamai [3] 提出了一种不同的通信系统,其隐私要求是掩蔽。在这种情况下,发送方通过无记忆状态相关信道 p Y | X,S 传输序列 X n ,其中状态序列 S n 具有固定的无记忆分布,不受传输影响。X n 的发送方被告知 S n ,并需要向接收方发送信息,同时限制接收方可以了解的有关 S n 的信息量。掩蔽设置也可以看作是与不受信任方的通信,其中 Alice 希望向 Bob 发送有限量的信息,并隐藏信息源 [4, 5]。相关设置也在 [6–8] 中进行了考虑。量子信息领域在实践和理论方面都在迅速发展 [9]。通过量子信道的通信可以分为不同的类别。对于经典通信,霍尔沃-舒马赫-威斯特摩兰 (HSW) 定理为量子信道的容量提供了一个正则化(“多字母”)公式 [10, 11]。虽然这种公式的计算一般难以处理,但它提供了可计算的下限,并且在特殊情况下可以精确计算容量。另一个有趣的场景是 Alice 和 Bob 共享纠缠资源。虽然纠缠可用于产生共享随机性,但它是一种更强大的辅助 [12]。例如,使用超密集编码,纠缠辅助可将无噪声量子比特信道上经典消息的传输速率提高一倍。Bennett 等人 [13] 在量子互信息方面充分表征了有噪声量子信道的纠缠辅助容量。Boche 等人 [14] 在编码器中使用信道状态信息 (CSI) 处理经典量子信道。容量是根据因果 CSI 确定的,并且正则化
我被指示推荐卡纳塔克邦的州政府编号费用12 FFM 2021日期为20.09.2024,费用12 FFM 2021日期为21.09.2024和Letter No。费用10 FFM 2023(e),日期为24.09.202424关于上述主题,要求开始对C类C矿业开始采矿业务的开始。在这方面,请告知咨询委员会(AC)在14.10.2024举行的会议上考虑此事。可以在该部的网站上访问上述会议的详细会议记录,网址为https://pariveh.nic.in//。