在2023年,芬兰面临着由2.3.4.4b A(H5N1)病毒引起的高度致病性禽流感,这些病毒从野生鸟类传播到毛皮农场。疫苗接种处于风险的人,例如毛皮和家禽农场工人,兽医和实验室工人,始于2024年6月,使用了由Seqirus生产的MF59-Adjuvant-Adjuvant灭活(H5N8)疫苗(基于2.3.4.4B A/Astrakhan/Astrakhan/32212/2020)。我们研究了39名受试者的两剂量疫苗接种方案后研究了抗体反应。疫苗接种诱导了与疫苗病毒和两种促枝2.3.4.4b病毒相当水平的功能抗体,这与芬兰的皮草动物的暴发或美国的牛有关。在先前未接种的人的两剂疫苗上,使用微隔核酸或血凝蛋白毒素的疫苗病毒的血清保护率为83%(95%CI 70-97%,滴度≥20)和97%(95%CI 90-100%,滴度90-100%,滴度≥40)。在先前H5接种疫苗的个体的子集中,第一个剂量已经导致了血清保护滴度,这表明免疫召回。这些数据表明,预计该疫苗将对当前循环的H5进化枝2.3.4.4b病毒进行交叉保护。
摘要在刚果民主共和国正在进行的一种I Monkeypox病毒(MPXV)爆发。在非非洲国家,已经报道了与旅行相关的进化枝I MPXV感染。2024年11月,加利福尼亚州的圣马特奥县卫生卫生确定了一份电子实验室报告,其中一份针对聚合酶链反应结果的结果暗示了最近从东非回来的男性旅行者MPXV感染。与加利福尼亚公共卫生部(CDPH)交往后,县卫生部门的工作人员在同一天在他的家中访问了该患者,并获得了皮肤脓疱标本,以进行加急的MPXV测试。进化枝I MPXV。这是美洲第一个报道的MPXV感染。在83个确定的接触中,有5个接收了jynneos vac Cine作为暴露后预防。所有联系人均已监测21天;未发现次要病例。患有MPOX兼容病变或临床特征的患者应接受MPXV测试,并且医疗保健提供者应立即将可疑的IMPXV感染(例如,MPOX表现和旅行历史)通知公共卫生机构(例如,MPOX表现和旅行历史记录与正在进行的进化枝I MPXV传输)或在接受II MPXV传播的区域)或II MMPXV clade clade clade clade clade dna dna dna dna dna dna dna dna dna dna。无法检测的测试结果触发其他测试,并促进基于传输的预防措施和其他预防性公共卫生干预措施的快速实施。
•35岁的男性患有艾滋病毒的男性出现了痛苦的皮疹和发烧。•四天前,他观察到结节性阴茎病变,最初是鲁尿的,但发展为疼痛的囊泡和溃疡。•昨天,他出现了发烧和类似的脸,树干和四肢的病变。他的口腔病变疼痛。•他最近从中非(卢旺达)返回9天,在离开美国前一天,他认可与另一名男性的无保护性接触。•检查以发烧,双侧腹股沟和腋窝淋巴结病以及脸部,躯干,手臂,口咽和阴茎的多个离散的脓疱和囊泡而引人注目。树干上的病变已经开始与周围的温暖和红斑结合。未发现眼病变。他能够忍受po。•HSV,梅毒,淋病和衣原体的测试是阴性的。阴茎病变的拭子对正托病毒呈阳性。随后的遗传分析确定了MPOX进化枝1b。
接触是任何直接接触感染者,其血液或其他体液,排泄物或组织在传染时期的人(有关传染时期的详细信息,请参见下一节)。这是公共卫生的责任:•识别,评估和分类与进化枝I MPOX•适当监控较高的风险接触的较高的风险接触•为在患者确认为进化枝的情况下,在患者中有一定的人与某些人接触的人(请参阅下文)的接触(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)(请参阅下文)可能已经开始在确认之前)。应评估每个潜在的接触风险,并适当地分类以进行随后的公共卫生随访。风险评估和进化枝的随访IMPOX联系人
mpox 病毒分为两个主要进化枝,即进化枝 I 和进化枝 II,每个进化枝又细分为进化枝 Ia(新发现的进化枝 Ib)、进化枝 IIa 和进化枝 IIb(导致 2022 年全球疫情的进化枝)。自 2022 年进化枝 IIb mpox 疫情爆发以来,已有 127 个国家报告了超过 117,663 例病例和超过 263 例死亡病例,尽管全球报告的数据可能不包括非洲地区最近发生的进化枝 I 疫情。根据美国疾病控制与预防中心 (US CDC) 和世界卫生组织 (WHO) 的数据,截至 2024 年 11 月 30 日,美国已报告 34,349 例 mpox 病例。2024 年,美国疫情继续以低速但稳定的速度增长,截至 2024 年 12 月 28 日,年初至今已记录 2,613 例病例。随着美国和全球范围内 IIb 分支的持续传播以及非洲地区 I 和 II 分支的传播增加,专家们担心国家和全球格局的变化可能会增加特定美国人群的健康风险。
多宿主病原体犀牛Equi是一种巨噬细胞的寄生虫,可防止吞噬体的成熟,从而创造了一个热情好客的环境,支持细胞内生长。有毒r。equi分别是宿主特异性的毒力质粒,PVAPA,PVAPB和PVAPN,它们编码了属于七个单属进化枝的17个VAP蛋白的家族。我们检查了所有17种VAP蛋白,以补充A R的细胞内生长的能力。equiδVAPA菌株,并显示仅VAPK1,VAPK2和VAPN支持该菌株的鼠巨噬细胞的生长。我们表明,只有进化枝-1蛋白vapa,vapk1,vapk2和vapn位于r上。Equi细胞表面。PVAPB质粒编码三个进化枝-1蛋白:VAPK1,VAPK2和VAPB。后者无法支持细胞内生长,并且不在细胞表面。我们先前表明,无序的N末端VAPA序列与VAPA的细胞表面定位有关。我们在这里表明,尽管17个VAP蛋白的无序N末端的长度和序列高度可变,但它在进化枝内是保守的,这与我们的观察到,即进化枝-1 VAP蛋白的N末端在细胞表面定位中起作用。
MPOX病毒被分为2个主要进化枝I和进化枝II,每个进化枝进一步分为IA,新近鉴定的进化枝IB,进化枝IIA和进化枝IIB,该进化枝IIB,该进化枝,该进化枝是负责2022年全球爆发的负责。自2022年进化枝IIB MPOX爆发开始以来,在126个国家 /地区报告了115,101例以上的病例和255例死亡,尽管全球报道的数据可能不包括非洲地区的最新进化枝I。根据美国疾病控制与预防中心(US CDC)和世界卫生组织(WHO),美国已报告了截至2024年10月31日的34,187例MPOX案件。 美国疫情在2024年继续以低但稳定的速度增长,截至2024年11月16日,每年记录了2,481例病例。 随着进化枝IIB在美国和全球的持续传播以及进化枝I和II在非洲地区的传播增加,专家担心国家和全球景观的变化有可能增加美国特定人口的健康风险。根据美国疾病控制与预防中心(US CDC)和世界卫生组织(WHO),美国已报告了截至2024年10月31日的34,187例MPOX案件。美国疫情在2024年继续以低但稳定的速度增长,截至2024年11月16日,每年记录了2,481例病例。随着进化枝IIB在美国和全球的持续传播以及进化枝I和II在非洲地区的传播增加,专家担心国家和全球景观的变化有可能增加美国特定人口的健康风险。
近期爆发的牛高致病性 H5 禽流感 (HPAI) 病毒现已在美国广泛传播,并蔓延至其他哺乳动物,包括人类。已报告数例人类病例,临床症状包括结膜炎和呼吸道疾病。然而,大多数感染者报告的症状为轻度至中度,而之前报告的人类高致病性 H5Nx 感染死亡率高达 50%。我们最近报告称,对 A/Puerto Rico/08/1934 H1N1 病毒具有免疫力的小鼠可免受高致病性 2.3.4.4b 型 H5N1 流感病毒的致命攻击。在这里,我们证明感染 2009 年大流行 H1N1 病毒株 A/California/04/2009 (Cal09) 或接种减毒活流感疫苗 (LAIV) 的小鼠对致命的 A/bovine/Ohio/B24OSU-439/2024 H5N1 病毒攻击具有中等至高度保护。我们还观察到,具有混合预先存在的免疫力(来自 LAIV 疫苗接种和/或 Cal09 感染)的雪貂对从猫中分离出的 HPAI H5N1 进化枝 2.3.4.4b 病毒具有保护作用。值得注意的是,这种保护作用独立于任何可检测到的针对 H5N1 病毒的血凝抑制滴度 (HAI)。为了探索可能有助于保护的因素,我们使用之前发布的 H1N1 毒株序列进行了详细的 T 细胞表位图谱分析。这项分析表明,我们牛 HPAI H5N1 病毒株内部蛋白质的氨基酸序列具有高度保守性。这些数据强调了探索有助于预防 HPAI H5N1 病毒的其他因素的必要性,例如除了 HA 抑制或中和抗体之外的记忆 T 细胞反应。
本研究的目的是评估临床医生评估 Clade I mpox 患者病变的评级者间信度和一致性。我们向经验丰富的临床医生提供了 17 张 Clade I mpox 或水痘图像,并要求他们独立指出最可能的诊断——mpox 或水痘——并根据病变的分期对病变进行分类。在选择最可能的诊断时,所有图像的准确度各不相同,评级者间信度较差(κ = 0.223;z = 10.1),一致性中等(P o = 68%)。当根据病变类型对其进行分类时,如果图像中存在单一病变类型,则评分者间信度为中等(κ = 0.671,z = 40.6)且一致性良好(P o = 78%),但是当图像中显示多种病变类型时,评分者间信度(κ = 0.153,z = 10.5)和一致性(P o = 29%)均显着下降。
不容低估。我们还观察到不同基因组区域之间的读取密度也存在很大差异,在少数物种中从不到30到800多个不等,表明基因的表达水平或序列偏向性不同。基于RNA-seq数据映射和SNP调用的结果,在REDO工具(Wu,Liu et al. 2018)中实现的自动化生物信息学流程在默认阈值下进行。因此,在叶片中检测到的叶绿体基因组原始编辑位点共有6,011个。然而,尽管经过多重严格过滤,偶尔仍会出现符合RNA编辑的序列错配,因此我们手动检查所有错配以消除假阳性,仅保留C-to-U和U-to-C编辑类型,编辑效率接近100%的编辑位点可能来自基因组变异也被消除。最终,总共有5,205个RNA编辑位点,