对应原则指出,经典力学从适当的限制中源自量子力学。然而,除了这个启发式规则之外,信息理论的观点表明,经典的力学是量子现实的压缩,较低信息的表示。量子力学通过叠加,纠缠和相干性来编码更多的信息,这些信息由于反应,相位平均和测量而丢失,将系统降低到经典概率分布。使用kolmogorov的复杂性来量化此转变,其中经典系统需要信息(n)位的信息,而量子描述仅需要O(2 n),显示复杂性的指数降低。进一步的合理性来自Ehrenfest的定理,该定理可确保量子期望值遵守牛顿的定律和路径的整体抑制,从而消除了当S≫≫时消除了非经典轨迹。因此,我们认为,我们认为经典力学是一种有损的,计算上降低的量子物理学的编码,而不是系统的量子相关性丧失,我们认为经典力学是一种有损的,计算上的编码。
本文始于对传统因果关系和地区概念的调查。本文介绍了特殊相对论和计算机科学的第一个非平凡综合,详细介绍了[EPS]中包含三个定理的工作,证明了古典物理学本身是非本地的。因此,第2和第3节中详细介绍的局部因果关系的概念不再适用于古典物理学。再次,这是有经过验证的定理,而不是假设或猜想的。具有动力学非局部性,我们将详细介绍算法熵是非局部性的半度性定义的算法。所有闭合和孤立的系统随着时间的流逝而在整个宇宙中演变而来,具有未同步的算法熵。具有统一的非局部性,存在算法时,如果可以访问停止序列,则可以推断出具有类似空间分离的系统的算法熵分数。具有相关性非局部性,我们表明,在宇宙中的所有系统中,熵的第二种算法定义是粗粒熵的。
图2:(a)实验离子电导率的奇偶校验图对计算上的相似。红点带有液化石油气电荷,蓝色的指控带有DFT电荷。最左侧的离子电导率,使用nernst-Einstein方法计算。中心,用nernst-Einstein方法计算的离子电导率。用惠勒 - 纽曼方法计算的最直接的离子电导率。(b)实验玻璃传输温度的奇偶校验图针对计算计算的温度。金点是对纯聚合物的模拟,而绿色的聚合物与LITFSI的聚合物。(c)实验离子电导率对计算模拟的奇偶校验图,其中每个聚合物在经过验证测得的玻璃转变温度下模拟,并由玻璃转变偏移温度从纯聚合物(金)或用盐(绿色)计算的聚合物计算出的玻璃过渡偏移温度。(d)Spearman and Pearson等级相关指标,用于t exp的模拟。(e)在实验温度下模拟的最佳结果与离子电导率变化下的结果相比。
在这篇综述中,我们讨论了有关机器学习算法开发的最新结果,用于表征磁性的磁性磁纹理,这些磁性质地源自Dzyaloshinskii - Moriya - Moriya相互作用,该相互作用竞争了Heisenberg在Ferromagnets中的Heisenberg同型交换。我们表明,对于经典的自旋系统,有一系列的机器方法,可以根据几个磁化快照的基础,允许其准确的相位进行分类和定量描述。反过来,对量子天空的研究是一个较少探索的问题,因为对使用经典超级计算机进行此类波浪函数的模拟存在基本局限性。一个人需要找到模仿近期量子计算机上量子天空的方法。在这方面,我们讨论了基于从投影测量值获得的斑点数量有限的量子天空状态来估算经典对象的结构复杂性的实现。
摘要:由于错误和写入过程的不完善,在物理支持中对经典数据的编码可以达到某种程度的精度。此外,由于系统的物理或化学不稳定性,存储数据可能会随着时间的推移而发生一定程度的退化。任何读出策略都应考虑到这种自然的不确定性程度并将其影响降至最低。光学数字存储器就是一个例子,其中信息被编码为一组细胞的两个反射值。使用纠缠的量子读取已被证明可以增强理想光学存储器的读出,其中两个级别是完美表征的。在这项工作中,我们分析了存储器构造不完善的情况,并提出了一种优化的量子传感协议,以在存在不精确写入的情况下最大限度地提高读出精度。所提出的策略在现有技术下是可行的,并且对检测和光学损失具有相对稳健性。除了光学存储器之外,这项工作还对生物系统中的模式识别、分光光度法以及从透射/反射光学测量中提取信息的任何情况都有影响。
在研究量子库计算机之后,我们进行了理论研究,以扩大库计算机的应用。我们研究了库计算机的通用架构,其中由不同动态控制的库计算机以输出反馈配置互连。这种架构的动机是使用非线性闭环结构来更好地捕获表现出非线性反馈现象的数据,类似于用于系统识别的 Wiener-Hammerstein 反馈模型。推导出互连库计算机均匀收敛的定理。然后,我们表明具有输出反馈的均匀收敛库计算机实现了一大类非线性自回归模型。最后,我们考虑了库设计问题,并提出了一种有效的算法来优化库内部参数,并展示了在噪声状态测量下几乎肯定收敛到 Kuhn-Tucker 点。
摘要 — 连接的移动设备数量的强劲增长对有效利用可用网络资源提出了新的挑战。代码域非正交多址 (NOMA) 技术似乎是一种非常有效的解决方案。每个设备都使用其分配的代码同时传输其数据以及用户标识符,而无需任何资源预留交换,从而节省了宝贵的无线资源。然而,这需要一个能够盲目检测活跃用户的接收器,这非常复杂。在量子架构有希望的叠加特性的驱动下,本文的目标是在 NOMA 的背景下调整和应用量子 Grover 算法进行活跃用户检测 (AUD),以减轻搜索复杂性。将这种改进的 Grover 算法与最佳经典最大似然 (ML) AUD 接收器以及基本的经典传统相关接收器 (CCR) 进行了比较。根据接收信号的信噪比 (SNR) 评估 AUD 概率的基准。我们表明,我们改进的 Grover 算法在高 SNR 范围内非常有前景。索引词 —NOMA、AUD、最大似然、量子算法、Grover 算法
当前的计划学习方法尚未在几个领域对古典计划者的竞争性能,并且总体绩效较差。在这项工作中,我们构建了提起计划任务的新图形表示形式,并使用WL算法从中生成效率。这些功能与经典的学习方法一起使用,这些方法的参数最多要少2个,并且比对计划模型的最先进的深度学习更快地训练了3个较高的速度。我们的新颖方法WL-goose可靠地从头开始学习启发式方法,并在公平的竞争环境中优于H FF启发式。它还在覆盖范围中的10个域中的4个域中的4分,在计划质量上的10个域中有7个域中的表现或与喇嘛的联系。wl-goose是实现这些壮举的计划模型的第一个学习。此外,我们研究了新颖的WL特征代理方法,以前的理论上的学习构造与计划的逻辑特征之间的联系。
2 = 1)Qubit违反了这些对称性。可以将其表示为(α|0⟩+β|1⟩)的选择,这是一个特权参考框架(例如大爆炸的可以通过16个数字(位置为4个,速度为4,加速度为4个)独立于时间,但在时空连续体中,对于其余的观察者质量是必需的。 相同的17个数字描述如此详尽地描述的特权参考框架,分别分别违反了标准模型的所有三个对称性或一般量子的“记录”,可以表示为17个基本波函数(或在自然和转移的自然(offertical ofdinal)数字之后,可以用自然(或转移)数字来识别Hillbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithermbert Ariith的函数(或类别)标准模型。 引入了对一般相对性相关概念的两个概括:(1)所有任意加速参考框架的类别的“离散参考框架”,构成平滑的歧管; (2)相对性的相对性的更一般原则,以及对所有离散参考框架的量子信息的保守性,涉及所有常规相对性的所有参考框架的平滑歧视。 然后,可以通过更一般的相对性原理作为特权参考框架的等效重新说明来解释从加速参考帧到标准模型的17个基本波函数的徒跃迁:平滑为离散。可以通过16个数字(位置为4个,速度为4,加速度为4个)独立于时间,但在时空连续体中,对于其余的观察者质量是必需的。相同的17个数字描述如此详尽地描述的特权参考框架,分别分别违反了标准模型的所有三个对称性或一般量子的“记录”,可以表示为17个基本波函数(或在自然和转移的自然(offertical ofdinal)数字之后,可以用自然(或转移)数字来识别Hillbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithermbert Ariith的函数(或类别)标准模型。引入了对一般相对性相关概念的两个概括:(1)所有任意加速参考框架的类别的“离散参考框架”,构成平滑的歧管; (2)相对性的相对性的更一般原则,以及对所有离散参考框架的量子信息的保守性,涉及所有常规相对性的所有参考框架的平滑歧视。然后,可以通过更一般的相对性原理作为特权参考框架的等效重新说明来解释从加速参考帧到标准模型的17个基本波函数的徒跃迁:平滑为离散。与参考框架概念概念相关的量子信息的保守性可以解释为恢复以太的概念,以太的概念,一种绝对不可移动的媒介和牛顿力学中的参考框架,可以将相对运动解释为绝对的运动或逻辑上:逻辑上:关系:关系。新的以太将由量子位(或量子信息)组成。可以通过特殊相对论通过量子力学与量子信息理论(或“量子力学和信息”)通过特殊相对论来跟踪“以太”的概念途径。纠缠和重力的识别也可以被视为“副产品”所隐含的,这是从平滑的“特殊和一般相对性”到量子力学和信息的“平坦”以太的过渡。量子醚一般都超出了“时间屏幕”,并将其描绘成黑暗和可见的物质和能量。
摘要 — 虽然量子计算在解决以前难以解决的问题方面具有巨大潜力,但其目前的实用性仍然有限。实现量子效用的一个关键方面是能够有效地与来自经典世界的数据交互。本研究重点关注量子编码的关键阶段,该阶段能够将经典信息转换为量子态,以便在量子系统内进行处理。我们专注于三种突出的编码模型:相位编码、量子比特格和量子图像的灵活表示 (FRQI),以进行成本和效率分析。量化它们的不同特征的目的是分析它们对量子处理工作流程的影响。这种比较分析提供了有关它们的局限性和加速实用量子计算解决方案开发的潜力的宝贵见解。索引词 — 量子计算、混合经典量子计算、量子编码、基准测试
