摘要 - 本文考虑了通用古典量子(CQ)通道的极地代码的设计和解码。通过使用量子消息(BPQM)来解码,尤其是配对测量BPQM(PM-BPQM)解码的想法。由于PM-BPQM解码器接受经典的密度演化(DE)分析,因此可以使用DE来设计任何CQ通道的极性代码,然后有效地计算代码速率和错误概率之间的权衡。我们还针对极地代码实施了PM-BPQM解码器的经典模拟。虽然可以在量子计算机上有效地实现解码器,但在古典计算机上模拟解码器实际上具有指数复杂性。因此,解码器的仿真结果受到限制,主要是为了验证我们的理论结果。
[1] Jimmy Lei BA,Jamie Ryan Kiros和Geoffrey E. Hinton。层归一化。2016。Arxiv:1607.06450 [Stat.ml]。[2] Nanxin Chen等。Wavegrad:估计波形产生的梯度。2020。Arxiv:2009.00713 [Eess.as]。[3]凯瑟琳·克罗森(Katherine Crowson)。在CIFAR-10上训练扩散模型。在线。2024。URL:https://colab.research.google.com/drive/1ijkrrv-d7bosclvkhi7t5docryqortm3。[4]凯瑟琳·克罗森(Katherine Crowson)。v-diffusion。在线。2024。URL:https: / / github。com/crowsonkb/v-diffusion-pytorch/blob/master/diffusion/utils.py。[5] Ekin D. Cubuk等。randaugment:实用的自动化数据增强,并减少了搜索空间。2019。Arxiv:1909.13719 [CS.CV]。 [6] Yann N. Dauphin等。 通过封闭式卷积网络进行语言建模。 2017。Arxiv:1612.08083 [CS.CL]。 [7] Mostafa Dehghani等。 通用变压器。 2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1909.13719 [CS.CV]。[6] Yann N. Dauphin等。通过封闭式卷积网络进行语言建模。2017。Arxiv:1612.08083 [CS.CL]。[7] Mostafa Dehghani等。通用变压器。2019。Arxiv:1807.03819 [CS.CL]。 [8] Yilun Du和Igor Mordatch。 基于能量的模型中的隐性产生和概括。 2020。Arxiv:1903.08689 [CS.LG]。 [9] Ian J. Goodfellow等。 生成对抗网络。 2014。Arxiv:1406.2661 [Stat.ml]。 [10] Dan Hendrycks和Kevin Gimpel。 高斯错误线性单元(Gelus)。 2023。Arxiv:1606.08415 [CS.LG]。 [11] Jonathan Ho,Ajay Jain和Pieter Abbeel。 剥离扩散概率模型。 2020。Arxiv:2006.11239 [CS.LG]。2019。Arxiv:1807.03819 [CS.CL]。[8] Yilun Du和Igor Mordatch。基于能量的模型中的隐性产生和概括。2020。Arxiv:1903.08689 [CS.LG]。[9] Ian J. Goodfellow等。生成对抗网络。2014。Arxiv:1406.2661 [Stat.ml]。[10] Dan Hendrycks和Kevin Gimpel。高斯错误线性单元(Gelus)。2023。Arxiv:1606.08415 [CS.LG]。[11] Jonathan Ho,Ajay Jain和Pieter Abbeel。剥离扩散概率模型。2020。Arxiv:2006.11239 [CS.LG]。[12] Jonathan Ho和Tim Salimans。无分类器扩散指南。2022。ARXIV:2207.12598 [CS.LG]。[13]安德鲁·霍华德(Andrew Howard)等人。搜索MobilenetV3。2019。Arxiv:1905.02244 [CS.CV]。[14] Andrew G. Howard等。 Mobilenets:用于移动视觉应用的有效卷积神经网络。 2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。[14] Andrew G. Howard等。Mobilenets:用于移动视觉应用的有效卷积神经网络。2017。Arxiv:1704.04861 [CS.CV]。 [15] Forrest N. Iandola等。 squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。 2016。Arxiv:1602.07360 [CS.CV]。 [16] Imagenet 64x64基准(图像生成)。 用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。 [17] Sergey Ioffe和Christian Szegedy。 批次归一化:通过减少内部协变性转移来加速深层网络训练。 2015。Arxiv:1502.03167 [CS.LG]。 [18] Diederik P. Kingma和Jimmy Ba。 亚当:一种随机优化的方法。 2017。Arxiv:1412.6980 [CS.LG]。 [19] Diederik P. Kingma和Ruiqi Gao。 将扩散目标理解为具有简单数据增强的ELBO。 2023。Arxiv:2303.00848 [CS.LG]。 [20] Diederik P. Kingma等。 变化扩散模型。 2023。Arxiv:2107.00630 [CS.LG]。 [21] Zhenzhong Lan等。 albert:一个精简版的语言表示学习。 2020。Arxiv:1909.11942 [CS.CL]。 [22] Ilya Loshchilov和Frank Hutter。 重量衰减正则化。2017。Arxiv:1704.04861 [CS.CV]。[15] Forrest N. Iandola等。squeezenet:较小的参数和€0.5MB型号的Alexnet级准确性。2016。Arxiv:1602.07360 [CS.CV]。[16] Imagenet 64x64基准(图像生成)。用代码的论文,2024。URL:https://paperswithcode.com/sota/image-generation-generation-en-on-imagenet-64x64。[17] Sergey Ioffe和Christian Szegedy。批次归一化:通过减少内部协变性转移来加速深层网络训练。2015。Arxiv:1502.03167 [CS.LG]。[18] Diederik P. Kingma和Jimmy Ba。亚当:一种随机优化的方法。2017。Arxiv:1412.6980 [CS.LG]。[19] Diederik P. Kingma和Ruiqi Gao。将扩散目标理解为具有简单数据增强的ELBO。2023。Arxiv:2303.00848 [CS.LG]。[20] Diederik P. Kingma等。变化扩散模型。2023。Arxiv:2107.00630 [CS.LG]。[21] Zhenzhong Lan等。albert:一个精简版的语言表示学习。2020。Arxiv:1909.11942 [CS.CL]。[22] Ilya Loshchilov和Frank Hutter。重量衰减正则化。2019。Arxiv:1711.05101 [CS.LG]。[23] Preetum Nakkiran等。深度下降:更大的模型和更多数据损害。2019。Arxiv:1912.02292 [CS.LG]。[24] Alex Nichol和Prafulla Dhariwal。改进了扩散概率模型。2021。Arxiv:2102.09672 [CS.LG]。[25] Aaron van den Oord,Nal Kalchbrenner和Koray Kavukcuoglu。像素复发性神经网络。2016。Arxiv:1601.06759 [CS.CV]。[26] Prajit Ramachandran,Barret Zoph和Quoc V. Le。搜索激活功能。2017。Arxiv:1710.05941 [CS.NE]。 [27] Danilo Jimenez Rezende和Shakir Mohamed。 差异推断与归一化流量。 2016。Arxiv:1505.05770 [Stat.ml]。2017。Arxiv:1710.05941 [CS.NE]。[27] Danilo Jimenez Rezende和Shakir Mohamed。差异推断与归一化流量。2016。Arxiv:1505.05770 [Stat.ml]。
14 如果值得做,就值得过度做:阈值定理 225 14.1 对抗性错误. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... ..................................................................................................................................................................................................................240 14.7 连接与阈值定理 ..................................................................................................................................................................................................................243
量子数据访问和量子处理可以使某些经典的难处理学习任务变得可行。然而,在不久的将来,量子能力只会提供给少数人。因此,需要允许经典客户端将学习委托给不受信任的量子服务器的可靠方案,以促进广泛获得量子学习优势。基于最近引入的经典机器学习交互式证明系统框架,我们开发了一个用于经典量子学习验证的框架。我们展示了经典学习者无法有效自行解决的学习问题,但他们在与不受信任的量子证明者交互时可以有效可靠地解决这些问题。具体来说,我们考虑了具有均匀输入边际分布的不可知学习奇偶校验和傅里叶稀疏函数问题。我们提出了一种新的量子数据访问模型,我们称之为“混合叠加”量子示例,在此基础上我们为这些任务提供了有效的量子学习算法。此外,我们证明了不可知量子奇偶性和傅里叶稀疏学习可以通过仅具有随机示例或统计查询访问的经典验证器有效地验证。最后,我们展示了学习和验证中的两种一般场景,其中量子混合叠加示例不会导致样本复杂度优于经典数据。我们的结果表明,量子数据用于学习任务的潜在能力虽然不是无限的,但可以通过与不受信任的量子实体交互而被经典代理利用。
量子信息通常比经典信息具有更丰富的结构,至少直观上是如此。第一个(但通常是错误的)想法是相位和幅度是连续的,并且量子信息可能能够存储比经典信息多出指数或无限多的信息;但这始终不正确 1 。由于经典信息和量子信息具有截然不同的性质,学界在不同背景和方向研究它们之间的区别,包括建议辅助量子计算[NY04、Aar05、Aar07、AD14、NABT14、HXY19、CLQ19、CGLQ20、GLLZ21、Liu22]、QMA 与 QCMA(即具有量子或经典见证的量子 NP)[AN02、AK07、FK18、NN22]、量子与经典通信复杂性[Yao93、BCW98、Raz99、AST + 03、BYJK04、Gav08] 等等。理解它们之间差异的一种方法是研究单向通信复杂度:即 Alice 和 Bob 想要用他们的私有输入联合计算一个函数,但 Alice 和 Bob 之间只允许进行一次量子/经典通信。在众多研究中,Bar-Yossef、Jayram 和 Kerenidis [ BYJK04 ] 展示了量子和经典单向通信复杂度之间的指数分离,即所谓的隐藏匹配问题。另一种方法是研究 QMA 与 QCMA 。2007 年,Aaronson 和 Kuperberg [ AK07 ] 展示了关于黑盒量子幺正的黑盒分离,而关于经典预言机的相同分离仍是一个悬而未决的问题。十多年后,Fefferman 和 Kimmel [ FK18 ] 使用分布式就地证明了第二种黑盒分离
量子密码学中一个尚未解决的主要问题是是否有可能混淆任意量子计算。事实上,即使在经典的 Oracle 模型中,人们也可以自由地混淆任何经典电路,但关于量子混淆的可行性仍有许多需要了解的地方。在这项工作中,我们开发了一系列新技术,用于构建量子态混淆器,这是 Coladangelo 和 Gunn (arXiv:2311.07794) 最近在追求更好的软件版权保护方案时形式化的一个强大概念。量子态混淆是指将量子程序(由具有经典描述的量子电路 𝐶 和辅助量子态 | 𝜓 ⟩ 组成)编译成功能等价的混淆量子程序,该程序尽可能隐藏有关 𝐶 和 | 𝜓 ⟩ 的信息。我们证明了我们的混淆器在应用于任何伪确定性量子程序(即计算(几乎)确定性的经典输入/经典输出功能的程序)时是安全的。我们的安全性证明是关于一个高效的经典预言机的,可以使用量子安全不可区分混淆来启发式地实例化经典电路。我们的结果改进了 Bartusek、Kitagawa、Nishimaki 和 Yamakawa (STOC 2023) 的最新工作,他们还展示了如何在经典预言机模型中混淆伪确定性量子电路,但仅限于具有完全经典描述的电路。此外,我们的结果回答了 Coladangelo 和 Gunn 的一个问题,他们提供了一种关于量子预言机的量子态不可区分混淆的构造,但留下了一个具体的现实世界候选者的存在作为一个悬而未决的问题。事实上,我们的量子状态混淆器与 Coladangelo-Gunn 一起为所有多项式时间函数提供了“最佳”复制保护方案的第一个候选实现。我们的技术与之前关于量子混淆的研究有很大不同。我们开发了几种新颖的技术工具,我们期望它们在量子密码学中得到广泛应用。这些工具包括一个可公开验证的线性同态量子认证方案,该方案具有经典可解码的 ZX 测量(我们从陪集状态构建),以及一种将任何量子电路编译成“线性 + 测量”(LM)量子程序的方法:CNOT 操作和部分 ZX 测量的交替序列。
我们通过将POTTS模型扩展到包括真实和合成空间中邻近的原子之间的相互作用并研究其效能特性的原子之间的相互作用来引入超声分子合成或rydberg原子合成维度的量子物质类似物。对于J 1的中间值,所得阶段和相图与时钟和小人模型的相似,其中三个阶段出现。有一个类似于高温无序相和低温铁磁相之间量子合成维度模型的板相。我们还使用机器学习来使用混淆方法学习相图的非平凡特征,该方法能够辨别出几种连续的相变。
摘要 — 量子计算的出现提出了如何在开发过程中识别(与安全相关的)编程错误的问题。然而,目前的静态代码分析工具无法对特定于量子计算的信息进行建模。在本文中,我们识别了这些信息,并建议相应地扩展经典代码分析工具。在这些工具中,我们认为代码属性图非常适合这项任务,因为它可以很容易地通过量子计算特定信息进行扩展。为了验证我们的概念,我们实现了一个工具,该工具在图中包括来自量子世界的信息,并展示了它分析用 Qiskit 和 OpenQASM 编写的源代码的能力。我们的工具汇集了来自经典和量子世界的信息,从而实现了跨两个领域的分析。通过将所有相关信息结合到一个详细的分析中,这个强大的工具可以帮助应对未来的量子源代码分析挑战。索引词 — 静态代码分析、软件安全、量子代码属性图、量子源代码分析
摘要 — 图像分类在遥感中起着重要作用。地球观测 (EO) 不可避免地进入了大数据时代,但对计算能力的高要求已经成为使用复杂机器学习模型分析大量遥感数据的瓶颈。利用量子计算可能有助于解决这一挑战,因为它可以利用量子特性。本文介绍了一种混合量子-经典卷积神经网络 (QC-CNN),它应用量子计算有效地从 EO 数据中提取高级关键特征以进行分类。此外,采用振幅编码技术减少了所需的量子位资源。复杂度分析表明,与经典模型相比,所提出的模型可以加速卷积运算。通过 TensorFlow Quantum 平台,使用不同的 EO 基准(包括 Overhead-MNIST、So2Sat LCZ42、PatternNet、RSI-CB256 和 NaSC-TG2)对模型性能进行评估,结果表明,该模型能够取得比经典模型更优的性能,且具有更高的泛化能力,验证了 QC-CNN 模型在 EO 数据分类任务上的有效性。
本研究探索了将量子数据嵌入技术集成到经典机器学习 (ML) 算法中,旨在评估一系列模型的性能增强和计算影响。我们探索了各种经典到量子的映射方法,从基础编码、角度编码到幅度编码,对于编码经典数据,我们进行了一项广泛的实证研究,涵盖了流行的 ML 算法,包括逻辑回归、K 最近邻、支持向量机和集成方法,如随机森林、LightGBM、AdaBoost 和 CatBoost。我们的研究结果表明,量子数据嵌入有助于提高分类准确性和 F1 分数,尤其是在本质上受益于增强特征表示的模型中。我们观察到对运行时间的细微影响,低复杂度模型表现出适度的增加,而计算密集型模型则经历明显的变化。值得注意的是,集成方法在性能提升和计算开销之间表现出良好的平衡。这项研究强调了量子数据嵌入在增强传统 ML 模型方面的潜力,并强调了权衡性能改进与计算成本的重要性。未来的研究方向可能涉及改进量子编码过程以优化计算效率,并探索现实世界应用的可扩展性。我们的工作为量子计算和传统机器学习交叉领域的知识体系的不断增长做出了贡献,为寻求在实际场景中利用量子启发技术优势的研究人员和从业者提供了见解。