群集定期间隔短的短质体重复序列(CRISPR)相关蛋白(CAS)系统通过提供高精度和多功能性来彻底改变了基因组编辑。然而,大多数基因组编辑应用都依赖数量有限的良好特征的CAS9和CAS12变体,从而限制了更广泛的基因组工程应用的潜力。在这项研究中,我们广泛探索了CAS9和Cas12蛋白,并开发了Casgen,这是一种基于边缘的基于边缘的潜在空间正则化的新型深层生成模型,以增强新生成的Cas9和Cas12蛋白的质量。具体来说,卡斯根采用一种结合分类来过滤非CAS序列的策略,对潜在空间的贝叶斯优化来指导功能相关的设计,并使用基于Alphafold的分析进行彻底的结构验证,以确保稳健的蛋白质产生。我们从知名的生物数据库(例如InterPro和PDB)中收集了一个具有3,021 cas9、597 Cas12和597个非CAS蛋白序列的综合数据集。为了验证生成的蛋白质,我们使用BLAST工具进行了序列对齐,以确保新颖性并过滤到与现有CAS蛋白的高度相似序列。使用AlphaFold2和AlphaFold3的结构预测证实,生成的蛋白质与已知CAS9和CAS12变体具有很高的结构相似性,TM分数在0.70至0.85之间,并且root-Mean-square偏差(RMSD)值低于2.00。序列身份分析进一步表明,生成的CAS9直系同源物在已知变体中表现出28%至55%的身份,而CAS12A变体的身份高达48%。我们的结果表明,提出的CAS生成模型具有通过设计保留功能完整性的各种CAS蛋白来扩展基因组编辑工具包的重要潜力。开发的深层生成方法为合成生物学和治疗应用提供了有希望的途径,从而为开发了更精确,更通用的CAS基因组编辑工具的开发。
癫痫的诊断和治疗在很大程度上取决于脑电信号样本中癫痫发作的鉴定。本文主要集中于鉴定癫痫发作和基于EEG信号的分类,该特征的三个重要统计特征优先考虑EEG信号的非平稳特征,即复杂性,能量波动和自回旋模型,以表示独特的癫痫发作模式。测量复杂性的样品熵(SE)的三个特征,一种平均Teager Energy(MTE)之一,它测量了与癫痫发作相关的暂时性能量波动,而四种自回归(AR)建模技术提出了一种新颖的癫痫发作方法。基于线性相关性,AR模型用于表示独特的癫痫发作模式。为了训练AR模型,将信号分为图像前(塞氏症前)和间歇性(非西部)段。在检测阶段,通过滑动窗口计算了EEG信号的MTE和SE特征样本,并利用AR模型预测以下样品。本文表明,MTE,SE和AR模型共同产生了有希望的癫痫发作结果。这种方法在识别癫痫发作和非塞亚零件方面的敏感性和特异性优于现有方法。所提出的方法有可能用于实时癫痫发作检测应用,从而促进癫痫患者的及时诊断和治疗。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
背景。未知原始起源(CUP)的癌占新诊断的晚期恶性肿瘤的2% - 5%,并以化学疗法作为护理标准。Cupisco(NCT03498521)是一项正在进行的随机试验,该试验使用全面的基因组亲膜(CGP),将杯赛患者分配给基于基因组亲实现的靶向或免疫疗法治疗臂。,我们对CGP的杯子病例进行了重新观察分析,以确定有多少有资格进入实验性杯状臂的可能有资格。材料和方法。使用基于混合捕获的基础CDX分析(平均覆盖范围,> 600倍)分析了基础库数据库中基础科目数据库中的腺癌和未分化的杯子标本。确定了基因组改变,微卫星不稳定性(MSI),肿瘤突变负担(TMB),杂合性(GLOH)的基因组丧失(GLOH)和程序性死亡 - 结构1(PD-L1)阳性。
本文介绍了几种方法:一种基于居民分离的方法,称为SEQ2RES,另一种基于多标签分类,称为BigRu+Q2L。第三种方法将它们结合到两个阶段的模型中。与以前的分离不同,将传感器事件分配给居民一一将传感器事件分配给居民,SEQ2RES采用序列到序列(SEQ2SEQ)[18] ARCHITCOUNT。它对整个传感器序列进行建模,并基于建模上下文生成分离的序列。另一方面,Bigru+Q2L使用注意机制不仅在活动标签之间,而且在标签和特征之间进行构成相关性。这可以实现更准确,更灵活的多标签分类。最后,这两种方法是在一个模型中组合在一起的,该模型将居民信息分开,同时考虑居民活动的相关性。
运动图像(MI)允许设计自定进度的大脑 - 计算机界面(BCIS),该界面有可能提供直观且连续的相互作用。但是,具有三个以上命令的非侵入性MI基于BCI的实施仍然是一项困难的任务。首先,解码不同动作的MIS数量受到在相应来源之间保持足够间距的限制,因为近区域的脑电图(EEG)活性可能会加起来。第二,脑电图产生了大脑活动的相当嘈杂的图像,这会导致分类性能差。在这里,我们提出了一种解决方案,通过使用合并的MIS(即同时涉及2个或更多身体部位的错误)来解决可识别的运动活动的局限性。,我们提出了公共空间模式(CSP)算法的两种新的多标记用途,以优化信噪比,即MC2CMI和MC2SMI方法。,我们在8级的脑电图实验中记录了来自七个健康受试者的脑电图信号,包括剩余条件和所有可能的组合使用左手,右手和脚。所提出的多标记方法将原始的8级问题转换为一组三个二进制问题,以促进使用CSP算法。在MC2CMI方法的情况下,每个二进制问题组在一个类别中共同参与了三个选定的身体部位之一,而其余的不参与相同身体部位的MIS则在第二类中分组在一起。以这种方式,对于每个二进制问题,CSP算法都会产生特征,以确定特定的身体部分是否从事任务。最后,通过应用8级线性判别分析,将三组功能合并在一起,以预测用户意图。MC2SMI方法非常相似,唯一的区别是,在训练阶段考虑的任何组合MIS,这大大加速了校准时间。对于所有受试者,MC2CMI和MC2SMI方法的精度都比经典的配对(PW)和One-Vs.-All(OVA)方法更高。我们的结果表明,当正确调制大脑活动时,多标签方法代表了一个非常有趣的解决方案,可以增加命令数量,从而提供更好的相互作用。
摘要 - 监控运动员运动对于提高性能,减轻疲劳并减少受伤的可能性很重要。高级技术,包括计算机视觉和惯性传感器,在对运动特定运动进行分类方面已广泛探索。将自动体育行动标签与运动员监控数据相结合提供了一种有效的方法来增强工作量分析。关于对运动特定运动进行分类的最新研究表明,基于个别运动员的训练和评估方法的趋势,使模型可以捕获每个运动员特有的独特功能。这对于运动员之间技术差异很大的运动特别有益。当前的研究使用受监督的机器学习模型,包括神经网络和支持向量机(SVM),以使用从上下背包惯性测量单元(IMU)传感器中提取的功能来区分跑步表面,即田径轨道,硬砂和软砂。主成分分析(PCA)用于特征选择和降低维度,增强模型效率和解释性。我们的结果表明,与运动员无关的方法相比,运动员依赖的训练方法可大大提高分类性能,从而达到更高的加权平均精度,召回,F1得分和准确性(p <0.05)。
摘要。人类活动识别在包括医疗保健和智能家居在内的各个领域都起着至关重要的作用。随着配备环境传感器的智能房屋的越来越多,人们对利用人工智能技术的兴趣越来越兴趣,以理解和认识到这些环境中的人类活动。但是,环境传感器收集的数据的规则和嘈杂性质提出了独特的挑战。为了应对这些挑战,我们建议使用接受传感器激活序列训练的预训练的嵌入式嵌入,通常是基于类似于GPT的架构的算法,以证明在智能家庭中日常生活的分类表现。此外,我们利用从一个环境中获得的知识来增强另一个环境的活动识别,研究转移学习的概念。结果表明,GPT变压器解码器的方法在多个数据集的精度和平衡精度方面优于其他算法。这些发现还突出了转移学习的潜力,从干净且大的数据集中,GPT跨解码器预先训练的嵌入在各种情况下显示出令人鼓舞的结果。
在本文中,我们提出了一种创新的动态分类算法,旨在实现零遗漏的检测和最小误报的观察。使用监督模型将数据分配到N当量的训练子集和n个预测子集中,然后是n个单独的预测模型的独立预测。这使每个预测模型都可以在较小的数据范围内运行,从而提高了整体准确性。此外,该算法利用通过监督学习生成的数据来进一步完善预测结果,滤除未满足准确性要求的预测,而无需引入其他模型。实验性调查表明,当数据分配误差最小时,动态分类算法实现了出色的性能,而零遗漏的检测和最小的假阳性,则显着超过了现有的模型结合体。即使在分类错误较大的情况下,算法仍然可以与最新模型相提并论。这项研究的关键创新包括自我监督的分类学习,小范围子集预测的使用以及直接拒绝不合格的预测。虽然当前的算法在自动参数调整和分类模型效率方面仍然有改进的空间,但它在多个数据集中表现出出色的性能。未来的研究将着重于优化分类组件,以进一步增强算法的鲁棒性和适应性。
疼痛管理和严重性检测对于有效的治疗至关重要,但是传统的自我报告方法是主观的,并且可能不适合非语言个体(口语有限的人)。为了解决此限制,我们使用面部表情探索自动疼痛检测。我们的研究利用深度学习技术来通过分析来自疼痛情感面孔数据库(PEMF)的面部图像来改善疼痛评估。我们提出了两种新颖的方法1:(1)混合交通模型与长期短期记忆(LSTM)块相结合,以分析视频框架并预测疼痛的存在,以及(2)与LSTM集成的时空图形卷积网络(STGCN),与LSTM集成在一起,以从面部图像中为疼痛图像进行过程地标。我们的工作代表了PEMF数据集进行二进制疼痛分类的首次使用,并通过广泛的实验证明了这些模型的有效性。结果突出了结合空间和时间特征以增强疼痛检测的潜力,从而在客观疼痛评估方法中提供了有希望的进步。