摘要:近几十年来,脑机接口 (BCI) 的研究变得更加民主,使用基于脑电图 (EEG) 的 BCI 的实验急剧增加。协议设计的多样性和对生理计算日益增长的兴趣要求同时改进 EEG 信号和生物信号(如皮肤电活动 (EDA)、心率 (HR) 或呼吸)的处理和分类。如果一些基于 EEG 的分析工具已经可用于许多在线 BCI 平台(例如 BCI2000 或 OpenViBE),那么在线使用算法之前,执行离线分析以设计、选择、调整、验证和测试算法仍然至关重要。此外,研究和比较这些算法通常需要编程、信号处理和机器学习方面的专业知识,而许多 BCI 研究人员来自其他背景,对这些技能的培训有限或没有培训。最后,现有的 BCI 工具箱专注于 EEG 和其他脑信号,但通常不包括其他生物信号的处理工具。因此,在本文中,我们描述了 BioPyC,这是一个免费、开源且易于使用的 Python 平台,用于离线 EEG 和生物信号处理和分类。基于直观且引导良好的图形界面,四个主要模块允许用户遵循 BCI 过程的标准步骤,而无需任何编程技能:(1)读取不同的神经生理信号数据格式,(2)过滤和表示 EEG 和生物信号,(3)对它们进行分类,以及(4)可视化并对结果进行统计测试。我们在四项研究中说明了 BioPyC 的使用,即根据 EEG 信号对心理任务、认知工作量、情绪和注意力状态进行分类。
RMIT是一所多部门技术,设计和企业大学。 大学的使命是通过研究,创新和参与来帮助塑造世界,并为学生创造变革性的经验,以为生活和工作做好准备。 有关RMIT大学的更多信息,请遵循以下链接。 https://www.rmit.edu.au/about https://www.universitiesaustralia.edu.au/university/rmit-university/ https://www.rmit.edu.au/about/facts-figures Our three main campuses in Melbourne are located in the heart of the City, Brunswick and邦多拉。 其他地点包括Point Cook,Hamilton和Bendigo,越南的两个校园(Hanoi和Ho Chi Minh City)以及西班牙巴塞罗那的一个中心。 RMIT是一所真正的全球大学。 https://www.rmit.edu.au/about/our-locations-and-facilities,我们也致力于重新定义我们的关系,并支持和支持,支持本地的自我确定。 我们的目标是通过将我们所做的一切都嵌入和解的方式来实现我们的价值观,文化,政策和结构来实现持久的转变。 我们正在改变我们的认识,工作和努力支持可持续和解的方式,并激活土著和非土著员工,学生和社区之间的关系。 我们在墨尔本的三个校园(城市,不伦瑞克和邦多拉校园)位于Woi Wurrung人民的未成年土地上,库林国家东部的Wurrung语言群体。RMIT是一所多部门技术,设计和企业大学。大学的使命是通过研究,创新和参与来帮助塑造世界,并为学生创造变革性的经验,以为生活和工作做好准备。有关RMIT大学的更多信息,请遵循以下链接。https://www.rmit.edu.au/about https://www.universitiesaustralia.edu.au/university/rmit-university/ https://www.rmit.edu.au/about/facts-figures Our three main campuses in Melbourne are located in the heart of the City, Brunswick and邦多拉。其他地点包括Point Cook,Hamilton和Bendigo,越南的两个校园(Hanoi和Ho Chi Minh City)以及西班牙巴塞罗那的一个中心。RMIT是一所真正的全球大学。https://www.rmit.edu.au/about/our-locations-and-facilities,我们也致力于重新定义我们的关系,并支持和支持,支持本地的自我确定。我们的目标是通过将我们所做的一切都嵌入和解的方式来实现我们的价值观,文化,政策和结构来实现持久的转变。我们正在改变我们的认识,工作和努力支持可持续和解的方式,并激活土著和非土著员工,学生和社区之间的关系。我们在墨尔本的三个校园(城市,不伦瑞克和邦多拉校园)位于Woi Wurrung人民的未成年土地上,库林国家东部的Wurrung语言群体。
摘要 — 神经形态计算是一个令人兴奋且发展迅速的领域,旨在创建能够复制人类大脑复杂动态行为的计算系统。有机电化学晶体管 (OECT) 因其独特的生物电子特性而成为开发此类系统的有前途的工具。在本文中,我们提出了一种使用 OECT 阵列进行信号分类的新方法,该方法表现出类似于通过全局介质连接的神经元和突触的多功能生物电子功能。我们的方法利用 OECT 的固有设备可变性来创建具有可变神经元时间常数和突触强度的储存器网络。我们通过将表面肌电图 (sEMG) 信号分为三个手势类别来证明我们方法的有效性。OECT 阵列通过多个门馈送信号并测量对具有全局液体介质的一组 OECT 的响应来执行有效的信号采集。我们比较了在有和没有将输入投射到 OECT 上的情况下我们的方法的性能,并观察到分类准确率显著提高,从 40% 提高到 68%。我们还研究了不同的选择策略和使用的 OECT 数量对分类性能的影响。最后,我们开发了一种基于脉冲神经网络的模拟,该模拟模仿了 OECT 阵列,并发现基于 OECT 的分类与基于脉冲神经网络的方法相当。我们的工作为下一代低功耗、实时和智能生物医学传感系统铺平了道路。
虽然以人为本的机器学习方法探索了互动循环中的各种人类角色,但出现了主动机器教学(IMT)的概念,重点是利用人类作为老师的教学技能来构建机器学习系统。但是,大多数系统和研究都专门用于单个用户。在本文中,我们在图像分类的背景下研究了协作互动式教学,以分析人们如何共同构建教学过程并理解他们的经验。我们的贡献是三倍。首先,我们开发了一个名为Teachtok的Web应用程序,该应用程序使用户组能够策划数据并逐步训练模型。第二,我们进行了一项研究,其中有十名参与者分为三个团队,这些团队在九天内竞争建立一个图像分类器。参与者在Focus小组中讨论的定性结果揭示了机器教学任务中协作模式的出现,协作如何帮助修改教学策略以及参与者对他们与Teachtok应用程序的互动的思考。从这些发现中,我们对基于互动,协作和参与机器学习的系统的设计产生了影响。
摘要 - 物联网(IoT)是物理对象,汽车,家用电器以及与传感器,软件和连接集成的其他项目的净作品,可通过Internet收集和共享数据。物联网设备的快速扩散已经引起了一波新的安全挑战,特别是在恶意软件检测领域,这些挑战需要创新的解决方案。因此,这项研究的主要目的是开发一个先进的恶意软件检测系统,除了具有名为Chi-square的功能选择方法之外,还与自然语言处理技术同时利用了与自然语言处理技术一样。使用IOTPOT数据集对所提出的方法进行了测试,并将其与该领域的最新研究进行了比较,在该领域,它在准确性,F1分数,召回和精度方面的表现优于当前工作。此外,将提出的方法与基于时间的咨询进行了比较,并且在NLP和CHI-Square中表现出了出色的性能,而不是没有时间的咨询,这使其更适合于这种物联网系统限制的资源。我们还提供了提出的方法来促进透明度的代码。1。索引术语 - NLP,机器学习,恶意软件检测,卡方,功能选择
人工智能(AI)今天占据了中心排名,尤其是在技术进步无处不在的情况下。在最有影响力的工具中,深度学习已经在专业和学术领域中建立了自己。本文着重于卷积神经网络在检测与大米竞争的杂草方面的有效性。为了实现这一目标,将预训练的Inception_V3模型的扩展用于图像分类,而Mobilenet则用于图像处理。这种创新的方法在大米和杂草之间有挑战性的稻田上进行了测试,这是AI领域的重大进步。然而,两种模型的训练都揭示了局限性:Inception_V3在第10次迭代后表现出过度拟合,而Mobilenet在第一次迭代中表现出较高的波动性和过度拟合。尽管面临这些挑战,但Inception_V3还是以其出色的准确性而脱颖而出。
摘要:在医学领域,图像分割是一项至关重要且困难的任务。识别异常脑组织的一种有用技术是磁共振成像 (MRI) 扫描。对于放射科医生来说,从 MRI 扫描中正确识别和分类脑肿瘤仍然是一项困难且耗时的任务。这项研究提供了一种准确识别脑肿瘤的巧妙技术。该研究调查了卷积神经网络 (CNN) 与优化技术的结合使用,以从 MRI 数据中对不同类型的脑肿瘤进行分类。具体而言,使用 VGG16 模型上的迁移学习对肿瘤特征进行分类并识别肿瘤种类。该方法旨在提高 MRI 扫描效率并提高识别精度。当使用来自 Figshare、SARTAJ 和 Br35H 数据集 [31] 的 MRI 扫描进行评估时,利用迁移学习的所提出方法增强了原始 VGG16 模型的性能,允许比其基线功能更准确、更稳健的分类,从 91.38% [1] 提高到 95% 以上。关键词:MRI 预处理、分类、脑肿瘤、卷积神经网络、迁移学习
摘要:本研究研究了描绘变速箱,森林,农田和山脉的航空图像的分类。要完成分类工作,使用卷积神经网络(CNN)体系结构从输入照片中提取功能。然后,使用SoftMax对图像进行分类。要测试模型,我们使用90批量的ADAM优化器和0.001的学习率将其运行了十个时期。培训和评估都是使用数据集进行的,该数据集将Google卫星图像与MLRNET数据集融合在一起的图片。综合数据集包含10,400张图像。我们的研究表明,转移学习模型和MobilenetV2,对于景观分类非常有效。这些模型是实际使用的好选择,因为它们在精度和效率之间很好地结合在一起。我们的方法在内置的CNN模型上以87%的总体准确度获得了结果。此外,我们通过利用验证的VGG16和MobilenEtV2模型作为传输学习的起点,达到更高的精度。具体来说,VGG16的精度为90%,测试损失为0.298,而MobileNetV2的精度优于两个模型,其精度为96%,测试损失为0.119;结果表明,使用Mobilenetv2进行转移学习的有效性来对传输塔,森林,农田和山脉进行分类。关键字:航空图像,图像分类,卷积神经网络(CNN),转移学习