因此,具体而言,如果 M 上不支持任何逻辑运算符,则完整的 k 量子比特逻辑 Pauli 群可在其补码上得到支持。如果擦除 M 中的量子比特是一个可纠正错误,则我们说子集 M 是可纠正的。根据稳定器代码的纠错条件,我们可以说,如果 M 是可纠正的,则任何在 M 上支持的 Pauli 运算符要么与稳定器反向交换,要么包含在稳定器中。相反,如果 M 不可纠正,则存在一个在 M 上支持的非平凡 Pauli 运算符,它与稳定器交换但不包含在稳定器中;也就是说,如果 M 不可纠正,则存在一个在 M 上支持的非平凡逻辑运算符。为了证明清理引理,我们按如下方式进行。我们将阿贝尔化的 n 量子比特泡利群 P 视为二进制域 F 2 上的 (2 n ) 维向量空间,并称如果 P 的相应元素可交换,则向量 x 和 y 是正交的。令 PM 表示 P 的子空间,该子空间由 n 个量子比特的子集 M 支撑。令 S 表示 [[ n, k ]] 量子稳定器代码的稳定器。令 [ T ] 表示子空间 T 的维数。我们可以将 S 表示为 S = SM ⊕ SM c ⊕ S ′ 。(3)
逐渐从占用空间转移到室外空间。增加室外空气通风,即增加从室外引入的新鲜空气量(假设病原体浓度较低),稀释室内空气中的病原体浓度。增加排出到室外的室内空气量(连同其携带的病原体)可维持建筑压力并增加病原体从占用空间中清除的速度。这种组合方法对于降低空气传播病原体的浓度是有效的,但它不能解决受污染的表面问题,并且可能导致由于需要调节室外空气而增加能源消耗。此外,不受控制的通风会增加房间内的湿度,这可能导致霉菌的产生,并且在某些情况下可能促进其他病原体的传播。此外,根据房间内的气流,可能会形成涡流,一些病原体可能会在房间内气流减少和空气停滞的区域找到避难所。
作为晶圆清洁过程,RCA(美国无线电公司)清洁主要使用。但是,RCA清洁存在诸如洗澡生活不稳定,重新吸附杂质和高温清洁等问题。在此,我们试图通过使用螯合剂(草酸)解决这些问题来提高硅晶片的纯度。通过参考Pourbaix图,可以鉴定出由清洁液和每个金属粉之间反应产生的化合物。所有金属在反应前均表现出10μm或更高的粒径分布,但反应后的粒径分布为500 nm。在适当的情况下,可以证实反应前后的金属显示出不同的吸光度。由于通过这种清洁溶液清洗了回收硅晶片表面的元素分析,因此证实除了SI以外,未检测到其他次级。关键字:回收硅晶片,晶圆清洁,金属杂质,金属复合物,螯合剂
通过与客户的研究,我们确定了最适合编程和操作自动清洁机的角色。一般而言,我们建议分配给自由的人具有较高的技术水平以及对清洁过程进行战略性思考的能力。在日常使用方面,即使技术熟练程度低的人通常都能经过适当的培训,也可以操作机器。
产品:TX DSHS不认可任何特定产品的使用,而建议使用无香料的产品,这些产品尽可能含有更安全的化学成分。*所有列表n产品都是消毒剂。这些产品中的许多也被注册为消毒剂。选择列表n natitizer,请寻找带有单独说明和消毒的指令的产品。请务必按照正确的说明进行任务。消毒通常需要更高的产品浓度或更长的接触时间。
•稀释和排气。这两种方法通常用于组合用来将病原体从占用空间逐渐重新定位到外部空间。增加室外空气通风,即增加从外部带入的新鲜空气量(假定较低的病原体浓度),稀释室内空气中病原体的浓度。增加室内空气的量(以及它所携带的病原体)耗尽到外部,可维持建筑压力,并增加了从占用空间中去除病原体的速度。这种合并的方法可有效地降低空气传播病原体的浓度,但不能解决受污染的表面,并且可能导致能使外部空气调节的需求增加能源消耗。此外,不受控制的通风可以提高房间的湿度水平,这可能有助于霉菌的产生,并且在某些条件下,可能有助于促进其他病原体的传播。此外,根据房间内的气流,可能会形成涡流,并且某些病原体可能在房间区域发现避难所,气流减少和空气停滞。
摘要 - 整个地板清洁机器人分为几个部分,即由超声传感器,电动机屏蔽L298,Arduino Uno Microcontroller,Servo和DC电机组成。当Arduino Uno微控制器作为距离检测器和DC电动机作为机器人驱动器处理超声波电机时,此工具可以工作,然后DC电机由电动机屏蔽L298驱动。当超声波传感器检测到其前面的障碍物时,机器人将自动寻找不是地板清洁机器人障碍的方向。已经确定了传感器上的距离值,即,当超声传感器读取的距离低于15 cm时。测试超声传感器距离值的结果发现了发生的不同条件。在> 15厘米的距离内,获得了用于道路地板清洁的原型清洁机器人的状况,而距离<15 cm的距离,街道地板清洁机器人原型的状态已停止。
摘要 自 2010 年 1 月 1 日起,氨氮是《环境质量法》(EQA)中《工业废水管理条例》中新增的参数之一。根据该条例,工业设施位于集水区上游还是下游,氨氮限值最高限制为 10 ppm 和 20 ppm。然而,由于一些受影响公司的担忧,对于 2010 年之前开始运营的半导体公司,氨氮限值已提高到最初限值的两倍。这一临时限制将放宽至 2020 年 1 月 1 日。氨氮是由晶圆制造行业使用氢氧化铵溶液产生的,特别是在化学机械抛光(CMP)过程中。在 CMP 中,用浆料抛光硅晶圆表面会导致碎屑沉积在晶圆上。抛光后的清洁过程称为 CMP 后步骤。本文重点介绍使用 SpeedFam IPEC (SFI) AvantGaard™ 776 抛光机工具评估 CMP 后清洁效率。CMP 后步骤分为两个阶段,即抛光和擦洗过程。过去的研究人员对 CMP 后清洁进行了研究,但这些研究都无法采用,因为与湿法清洁工艺相比,这些技术在生产规模上不经济,或者所选化学品是氨基的。这项研究的目的是分析抛光和擦洗步骤的清洁效率,并制定一种不含氨的替代溶液,而不会影响清洁效率。研究发现,在抛光步骤中,晶圆上的颗粒被有效去除,去除效率为 99%,特殊配制的酸 SilTerra 清洁溶液 (SCS) 对颗粒和金属的去除能力与氢氧化铵相当,两者都实现了高于 97% 的阳离子和阴离子去除效率。SCS 的独特配方含有过氧化氢、硫酸和添加剂。该化学品是 SilTerra 的专利,由包括通讯作者在内的四位发明人拥有。之所以选择 SCS 进行评估,是因为它含有氧化和溶解污染物的必要成分。在 CMP 后清洗过程中跳过使用化学品的尝试并不理想,因为阴离子去除效率低于 95%。关键词:氨氮、环境和 CMP 后清洗。1. 简介氨氮是衡量废品或废水中氨含量的指标。根据《环境质量法》(工业废水)2009 年法规 [1],必须对废水废水分析中的氨氮进行监测和报告。
