e-issn:2618-0618 p-issn:2618-060x©农艺学www.agronyjournals.com 2024; 7(9): 14-19 Received: 18-07-2024 Accepted: 22-08-2024 VM Chaudhari Assistant Professor, Department of Horticulture, College of Agriculture Madhav University, Pindwara, Sirohi, Rajasthan, India Prayasi Nayak Assistant Professor, Department of Agriculture and Allied Sciences, CV Raman Global University, Janla Khordha, Odisha, India艾伦·沙沙埃尔·乔治(Allen Shamuel George)水产养殖系,渔业学院,安得拉邦(Andhra Pradesh)渔业大学,内洛尔(Nellore),安得拉邦(Andhra Pradesh),印度安得拉邦(Andhra Pradesh)学者,造林和农林业,Sam Higginbottom农业,技术与科学大学,(Shuats),Prayagraj,北方邦,印度北方邦,Subhadeep Karak National远程感应中心,海德拉巴德,海德拉巴德,海德拉巴,Teleangana,Teleangana,Teenangana,India S Anbarasan s Anbarasan Ph.d.D. Annamalai大学泰米尔纳德邦农学系研究学者,印度Bhavanasi Sai Meghana PG学者(园艺),花卉文化和美化环境,Y.S.R.博士园艺大学,园艺学院,阿南塔拉吉帕塔,安得拉邦,印度安得拉邦印度安得拉邦安得拉邦渔业大学渔业科学学院乔治水产养殖系
Poldrack,Russell A. 1,Markiewicz,Christopher J. 1,Appelhoff,Stefan 2,Ashar,Yoni K. 3,Auer,Tibor 4,5,Baillet,Sylvain,Sylvain 6,Bansal,Bansal,Shashank 7,Shashank 7,Beltrachini,Beltrachini,Beltrachini,Leanar,Leanar,Benar,Christian G. 9,Bertazzoli,bertazzoli,bertazzoli,bertazzoli,10,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,11,1111 ,, ,Blair,Ross W. 1,Bortoletto,Marta 10,Boudreau,Mathieu 16,Brooks,Teon L. 1,Teon L. 1,Calhoun,Vince D. 17,Castelli,Castelli,Filippo Maria 18,19,Clement,Clement,Patricia 20,21,Cohen,Cohen,Cohen,Cohen,Alexander L.22 23,24,吉尔斯(De Hollander),吉尔斯(De Hollander),25,de la iglesia-vayá,玛丽亚26,de la vega,Alejandro 27,Delorme,Arnaud,28,Devinsky,Orrin 29,Draschkow,Draschkow,Dejan,Dejan 30,Duff,Duff,Eugene Paul 31,Dupre,Dupre,Elizabeth 1,Earlin,Erlin,Erlind 32 Illaume 34,Galassi,Anthony 32,Gallitto,Giuseppe 35,36,Ganz,Melanie 37,38,Gau,Rémi39,Gholam 39,Gholam,James 40,Ghosh,Satrajit S. 41,Giacomel,Giacomel,Giacomel,Alessio,Alessio,Alessio 42 44 , Gramfort, Alexandre 45 , Guay, Samuel 46 , Guidali, Giacomo 47 , Halchenko, Yaroslav O. 48 , Handwerker, Daniel A. 32 , Hardcastle, Nell 1 , Herholz, Peer 49 , Hermes, Dora 50 , Honey, Christopher J. 51 , Innis, Robert B. 32 , Ioanas, Horea-Ioan 48 , Jahn, Andrew 52 , Karakuzu, Agah 16 , Keator, David B. 53,54,55 , Kiar, Gregory 56 , Kincses, Balint 35,36 , Laird, Angela R. 57 , Lau, Jonathan C. 58 , Lazari, Alberto 59 , Legarreta, Jon Haitz 60 , Li, Adam 61 , Li, Xiangrui 62 ,Love,Bradley C. 63,Lu,Hanzhang 64,Marcantoni,Eleonora 65,Maumet,Camille 66,Mazzamuto,Giacomo67,Meisler 67,Meisler,Steven L. 68,Mikkelsen,Mikkelsen,Mark 69 4,75,Niso,Guiomar 76,Norgaard,Martin 32,37,Okell,Thomas W. 59,Oostenveld,Robert 77,78,Ort,Ort,Eduard 79,Park J. 80,Patrick J. 80,Pawlik,Pallik,Pallik,Mateusz,Mateusz 81,Pernet,Pernet,Pernet,Cyril R.38,Pestilli,Pestilli,Pestilli,Petilli,franco,Petr,Petr,Petr,Jan,Jan 272菲利普斯(Phillips),克里斯托夫(Christophe),83,派恩,让·巴蒂斯特(Jean-Baptiste)84,波罗尼尼(Pollonini),卢卡(Luca)85,86,拉马纳(Raamana),普拉德普·雷迪(Pradeep Reddy),里特(Ritter),佩特拉(Ritter),佩特拉(Petra)88,89,90,91,92,里佐(Rizzo) 99,Routier,Alexandre 100,Saborit-Torres,Jose Manuel 26,Salo,Taylor 101,Schirner,Michael 88,89,90,91,92,Smith,Smith,Robert E. 102,103,Spisak,Spisak,Spisak,Spisak,Tamas,Tamas 35,104,Sprenger,Sprenger,Julia,Julia 105,Swann,Swann,Swann,Swann,Nicole C. C. C. Nicole C. 106 , Szinte, Martin 105 , Takerkart, Sylvain 105 , Thirion, Bertrand 45 , Thomas, Adam G. 32 , Torabian, Sajjad 107 , Varoquaux, Gael 108 , Voytek, Bradley 109 , Welzel, Julius 110 , Wilson, Martin 111 , Yarkoni, Tal 112 , Gorgolewski, Krzysztof J. 1
在行星表面的硅酸盐岩石的风化可以从大气中划出CO 2,以最终在行星内部埋葬和长期存储。这个过程被认为是对碳酸盐硅酸盐循环(碳循环)的基本负反馈,以维持地球上的克莱门特气候和潜在的温带系外行星。我们实施热力学,以确定风化速率是表面岩性(岩石类型)的函数。这些速率提供了上限,允许估计调节气候的最大风化速率。该建模表明,在给定岩石而非单个矿物质中矿物组合的风化对于确定行星表面上的风化速率至关重要。通过实施流体传输控制方法,我们进一步模拟了化学动力学和热力学,以确定受地球大陆和海洋壳构造及其上层岩石的启发的三种岩石的风化速率。我们发现,类似大陆壳的岩性的热力学风化速率比海洋壳的岩性特征低约一到两个数量级。我们表明,当CO 2二压压力降低或表面温度升高时,热力学而不是动力学会对风化产生强大的控制。在动力学和热力学上有限的风化状态取决于岩性,而供应限制的风化与岩性无关。我们的结果表明,热力学有限的硅酸盐风化的温度敏感性可能会激发对碳循环的正反馈,在这种情况下,随着表面温度的增加,风化速率降低。
KS Sangwan 教授,皮拉尼校区 MS Dasgupta 教授,皮拉尼校区 Abhijeet K. Digalwar 教授,皮拉尼校区 Bijay K. Rout 教授,皮拉尼校区 Manoj Soni 教授,皮拉尼校区 Rajesh P Mishra 教授,皮拉尼校区 Dhananjay Madhukar Kulkarni 教授,果阿校区 教授Pravin Madanrao Singru,果阿校区 Shibu Clement 教授,果阿校区 R. Karthikeyan 教授,迪拜校区 Amit Kumar Gupta 教授,海得拉巴校区 Jeevan Jaidi 教授,海得拉巴校区 Morapakala Srinivas 教授,海得拉巴校区 N Suresh Kumar Reddy 教授,海得拉巴校区 Sandip S. Deshmukh 教授,海得拉巴校区 Srinivasa 教授Prakash Regalla,海得拉巴校区 YV Daseswara Rao 教授,海得拉巴校区 NVM Rao 教授,Pilani 校区 Shamsher Bahadur Singh 教授,Pilani 校区 Ajit Pratap Singh 教授,Pilani 校区 Annapoorna Gopal 教授,Pilani 校区 Arya Kumar 教授,Pilani 校区 PB 教授Venkataraman,皮拉尼校区 Srikanth Mutnuri 教授,果阿校区 D. Sriram 教授,海得拉巴校区 Sanket Goel 教授,海得拉巴校区 S Gurunarayanan 教授,海得拉巴校区 Venkata Vamsi Krishna Venuganti 教授,海得拉巴校区 Bhausaheb Botre 博士,CSIR - CEERI,皮拉尼 Udit Narayan Pal 博士,CSIR - CEERI,皮拉尼
致谢作者要感谢英国学院圆桌会议的参与者在2021年7月对基于自然解决方案的参与者。Their contributions to the discussion as well as sharing their experiences and case-studies in background materials, has provided a valuable source for the production of this briefing: Yaser Abunnasr, Dóra Almássy, Diego Almendrades, Hillary Angelo, Cristina Argudin, Susan Baker, Ian Bateman, Matt Bishop, JD Brown, Michael Buser, Judy Bush, Harriet Bulkeley, Fernando Camacho Rico, Carlo Ceglia, Mahé Charles, Barney Dickson, Mihaela Dragan-Lebovics, Wolfram Dressler, Virginie Duvat, Aklilu Fikresilassie, Todd Gartner, Davide Geneletti, Anne-Claire Goarant, Julie Greenwalt, Fernando Gutiérrez Champion, Keith Hyams, Soudeh Jamshidian, Daniel Johns, Lisa Jones, Marie-Ange Kalenga, Christoph Küffer, Melike Kuş, Carmen Lacambra Segura, Reuben Larbi, Marije van Lidth de Jeude, Leslie Mabon, Inga Mangisi-Mafileo, Adrian Martin, Matthew McCartney, Rob McDonald, Timon麦克弗森(McPherson),维诺卡·门迪亚(VerónicaMendietaSiordia),克莱门特·梅特维尔(Clement Metivier),艾里斯·莫勒(Iris Moeller),蒂迪(Teodyl Nkuintchua),杰西卡·诺斯(Jessica Northey),杰西卡·诺伊(Jessica Northey),戴维·奥布拉(David Obura),塔尼亚·奥格拉(Tanya O'Garra),玛丽亚·奇亚拉(Maria Chiara),玛丽亚·奇亚拉(Maria Chiara Pastore),伊瓦·佩萨(Iva Pesa),伊瓦·佩萨(Iva Pesa) Manoj Roy,OliverSchütte,Pete Smith,Amanda Stone,Scott Vaughan,Walter Vergara,Joeli Veitayaki,Chiara Vitali,Arief Wijaya,Emily Wilkinson,Linjun Xie。
Bilfinger 推动 Highview Power 的创新存储项目,加速能源转型 • 为英国开创性的液态空气储能设施提供全面的咨询、采购和施工服务 • 利用 Bilfinger 深厚的行业专业知识推动可持续能源存储技术的重大进步 • 为英国的可再生能源目标和电网稳定工作做出重大贡献 • 约 200 名 Bilfinger 专业人员组成的专门团队部署在客户所在地英格兰曼彻斯特。 Bilfinger 与英国长时储能企业 Highview Power 合作,率先建设英国首个商业液态空气储能设施,旨在将剩余电力转化为液态空气进行储存。该变革性设施将存储足够的可再生能源,相当于 100 万户家庭一小时使用的电量,从而提高可持续性。Highview Power 的设施还将提供关键的电网稳定服务。 Bilfinger 的工程、自动化和项目英国业务流已经在施工前阶段提供了咨询服务,将负责工厂实现的全面采购和施工服务。 Bilfinger 的服务范围从钢材采购到广泛的工厂建设服务,包括机械、电气、仪表、绝缘、涂装和钢结构工程,以及包括土木工程和设备安装在内的所有施工方面的全面管理。作为总承包商,Bilfinger 致力于确保现场的最高安全标准。Bilfinger 工程、自动化和英国项目副总裁 Darren Clement 表示:“Highview Power 与 Bilfinger 的合作代表着能源转型的关键时刻。通过利用我们的行业专业知识,Bilfinger 将在这个项目中为国家可再生能源目标和电网稳定工作做出重大贡献。
在实际公司数据上展示流程挖掘可能是由于对数据隐私,监管限制和对竞争优势的考虑而导致的访问有限,这可能是具有挑战性的。在许多情况下,公司不愿共享其数据,因为它可能包含可能损害其业务的敏感信息,并且规范限制可能会进一步限制与外部方面的数据共享。尽管面临这些挑战,但人们越来越认识到过程采矿(包括现实数据)可以带给组织所带来的重大好处。为了克服这些挑战,公司可以使用综合或模拟数据作为展示和了解过程采矿的潜在好处的手段。但是,合成或模拟数据的使用具有局限性,因为它可能无法准确反映现实过程中的复杂性和细微差别。为了探索这些方法的潜力,竞争性的实时策略(RTS)游戏可以作为在时间压力下在复杂环境中进行决策分析的绝佳代理。在这种情况下,游戏数据是一个受控的实验环境(Wagner 2006),如其他与业务相关的学术研究(例如Clement(2023)(2023),Künn等人的作品。(2023)和Ching等。(2021)。表1将RTS游戏中的典型挑战与公司决策联系起来。RTS匹配的游戏历史记录在日志文件中持续存在。使用数据驱动的方法为此目的这些文件包含游戏中每个给定动作命令的事件日志,因此包含有关玩家行为的丰富数据,例如玩家采取的动作序列,他们分配的资源以及他们做出的战略决策。通过分析这些日志,研究人员可以对玩家行为和决策产生洞察力,可用于在竞争性理性环境中为过程提供和改善过程采矿和过程发现技术。
什么是关键词策略及其局限性“更多意味着添加。更多意味着减去多少。”学习使用关键词策略解决应用题的学生会执着于故事题中的孤立单词,解释单词而不是问题的上下文。关键词策略是一种教学生剖析应用题的方法,找出表示运算的单个单词。例如,学生可能会被教导“总计、更多、总共”用于加法,意思是应该加数字。或者他们可能会被教导“少多少、更少、差多少”总是表示减法。这个系统的缺陷在于,学生被训练成自动跳转到运算或程序,而不先理解对他们的要求。以此问题为例(Clement & Bernhard,2005):苏珊收集了 6 块石头,比简多 4 块。简收集了多少石头?如果学生使用关键词策略,他们可能会错误地认为“更多”意味着添加,然后断章取义数字而错误地执行运算。6 + 4 的答案是 10,但 Jan 实际上收集了 2 块石头。利用关键词策略或其他程序步骤并不能让学生了解如何开始解决问题、在面对问题时坚持不懈或评估解决问题的过程和结果的合理性。除了关键词具有误导性之外,有些问题并没有关键词,导致学生学会依赖关键词而没有策略。此外,当学生使用关键词解决较简单的问题时,他们在被要求解决更复杂、多步骤的问题时会感到困惑(Van de Walle & Lovin,2006)。相反,学生需要明白数学是关于推理和理解情况的。乔治·波利亚 (George Polya) 在其 1945 年出版的《如何解决问题》中首次介绍了解决问题的过程(见图 2)。在这个过程中,学生们被教导首先花时间去理解问题,然后再制定计划,然后执行计划,然后回顾检查和解释。虽然它提供了一个很好的结构来思考
1. Blázquez-Carballo,Ana Reyes 洛佩兹-内拉寄生虫学和生物医学研究所 - CSIC(西班牙)表达抗炎和抗纤维化神经肽的间充质干细胞:一种治疗自身免疫性心肌炎的新型先进疗法 2. Cerro,Isabel IIS-Fundación Jiménez Díaz(西班牙)聚合免疫球蛋白受体缺陷通过调节巨噬细胞炎症反应减少动脉粥样硬化 3. Chevillard,Cristophe INSERM(法国)线粒体和炎症相关基因中的罕见致病变异导致恰加斯病中的炎症性心肌病 4. Clemente-Casares,阿尔伯塔省泽维尔大学(加拿大)中性粒细胞衍生的激活素 A 在癌症介导的心脏骨骼肌病中的作用 5. Cochain,Clement Paris 心血管研究中心(法国) TREM2 驱动梗死心肌中促纤维化单核细胞衍生的巨噬细胞的积聚 6. Cunha-Neto,圣保罗埃德西奥大学 (巴西) 遗传学和细胞因子诱导的线粒体功能障碍:查加斯病心肌病和其他炎症性心脏病的新范式和治疗靶点 7. De La Cruz,艾丽西亚林雪平大学 (瑞典) 人诱导多能干细胞衍生的心肌细胞研究 PUFA 类似物作为长 QT 综合征的潜在治疗方法 8. De Prado,Lucía CNIO (西班牙) 巨噬细胞中 RagC-mTORC1 激活驱动的意外动脉粥样硬化保护作用 9. Espinosa,赫塔菲大学玛丽亚医院 (西班牙) 有和无阻塞性冠状动脉的心肌梗死中的炎症负担 10. Fantini, Francesca 米兰大学 (意大利) 库普弗细胞线粒体活力的调节会影响全身代谢 11. Galán, Miguel CNIC (西班牙) 巨噬细胞中线粒体转录因子 A 的缺乏会增加对蒽环类药物诱导的心脏毒性的敏感性 12. García, Álvaro CNIC (西班牙) 磷酸调节的 Caveolin-1:在血流介导的动脉壁组成和动脉粥样硬化形成重塑中的作用 13. Gomes, Rita i3S (葡萄牙) 开发一种具有抗炎特性的多功能心肌梗死贴片 14. Gómez, Almudena 马德里康普顿斯大学 (西班牙) miR-149-5p 通过调节 NF-κB 通路在动脉粥样硬化进展中的保护作用
休厄尔街,格兰奇敦布罗姆斯格罗夫街至霍姆斯代尔街 1 和 3 爱德华兹 J.,伯德因鲍德 5 托马斯·约翰,劳工制桶匠 7 麦卡锡 7 贝尔·乌尔斯·伊丽莎 9 托马斯·埃德温火车司机 9 丁尼克 CF,水手 10 尼格尔·詹姆斯,裁缝 11 马尔廷·查尔斯·阿尔伯特 11 埃弗里特·亨利,靴匠 13 霍尔德姆·约翰 12 威尔逊先生 R. E. 15 凯利·托马斯,鞋匠 13 贝特曼·约翰 17 劳埃德·休,石匠 14 卡利莫尔克拉拉夫人 19 加德纳·弗雷德里克·罗宾逊大卫公司,计时和交易进口商 21 赖特·理查德劳工莫里斯和史密斯,木材商人 25 麦金太太 E. 圣徒和交易进口商 27 罗布森威廉在这里交叉 29 布罗克韦查尔斯 16 克莱门特雷内 31 布莱~e 夫人 17 凯恩杰里迈亚 33 科恩詹姆斯 18 马尼.托恩 37 塔珀 JW,渔夫 19 林奇.约翰 39 巴克利 M ... 森,锅炉制造工 21 韦尔顿帕特里克牛仔 U 哈格蒂威廉 2?. 库姆爱德华 43 伯特托马斯,。消防员 23 O'Connell M:Hv 45 Tayl~r E~r~im,石匠 24 CunninlJ'ham 夫人 47 Prew1tt W1lham 25 Ha yes John • 49 Blockeway Philip 26 Kingston Samuel 51 Dunn Mary,杂货商 29 Naish T.,West Dock 酒店 Worcester Street 交叉口 --Collingdon Road 交叉口 55 Evans Mary Waters S.,鞋匠 57 Butt William,劳工 31 Summers T.,理发师 59 Bartlett. William. 劳工 32 Johns Ann. 店主 61 Noyes Charles,实验室 33 Musgrave Wm.,清洁工 63 Gainey Charles,消防员