几何机器学习在建模物理系统(作为粒子或分子系统)时结合了几何先验。Clifford代数通过引入代数结构来扩展欧几里得矢量空间,从而代表了对几何特征建模的吸引力的工具。该模型的一个示例是基于克利福德代数的等激神经网络的Clifford神经网络。使用Clifford代数对几何对象进行建模分布时,我们需要定义这些分布如何变换。因此,我们基于Clifford代数定义的函数梯度引入了Clifford代数的概率密度函数及其转换。在这里我们表明,欧几里得空间上克利福德代数之间功能的梯度诱导了限制在基本矢量空间的函数的规范梯度。这确保Clifford神经网络的梯度与广泛采用的自动分化模块(如自动射击)获得的梯度相吻合。我们从经验上评估了克利福德神经网络梯度的好处,以及克利福德代数的分布转换,以解决科学发现中分布的采样问题。
Gottesman and Chuang(1999)引入的量子组合的传送模型激发了Clif-Ford层次结构的发展。尽管具有量子计算的内在价值,但与该模型密切相关的魔术状态蒸馏的广泛使用强调了理解层次结构的重要性。除了诊断单位的情况外,人们对该等级结构的结构有限有限(Cui等,2017; Rengaswamy等人。2019)。我们通过Weyl(即Pauli)在这些级别上扩展了层次结构的第二和第三层的结构,第一个级别是无处不在的Pauli组。尤其是我们对Pauli Group上标准的操作的支持。自从第三级统一的保利会产生Trace-Lise Hermitian Cli效应以来,我们也表征了他们的Pauli支持。半单位单位在电视模型中节省了Ancilla,我们通过同骨转移探索他们的Pauli支持。最后,我们证明,直到通过clif-ford乘法,每个第三级统一通勤至少都使用一个Pauli矩阵。这可以无力地使用,以表明,直到通过cli的繁殖,每个第三级统一都在保利组的最大交换亚组上进行。另外,可以看出,后者意味着Beigi和Shor(2010)证明的广义半乳房构想。我们讨论了量子误差校正和高空产品设计中的潜在应用。
如果我们在这个基上用 T 2 门代替 T 门,情况就会发生显著变化。执行幺正运算 P=T 2 的门称为相位门。基 {H, P, CNOT} 上的量子电路通常被称为稳定器电路或克利福德电路。Gottesman-Knill 定理指出,基 {H, P, CNOT} 上的电路并不比经典计算机更强大(例如,参见 [6,第 10.5.4 章])。还推导出克利福德电路的更强限制 [1, 3]。最近,Buhrman 等人 [3] 表明,每个能用克利福德电路计算的布尔函数都可以写成输入变量子集的奇偶校验或其否定。
这里我们研究了可以使用量子比特 Clifford 层次结构中的元素构造的酉群。我们首先提供半 Clifford 和广义半 Clifford 元素必须满足的必要和充分规范形式才能进入 Clifford 层次结构。然后我们对可以由这些元素形成的群进行分类。直到 Clifford 共轭,我们对 Clifford 层次结构中可以使用广义半 Clifford 元素构造的所有此类群进行分类。我们在附录中讨论了此分类的一个可能的小例外。这可能不是对量子比特 Clifford 层次结构中所有群的完整分类,因为目前尚不清楚 Clifford 层次结构中的所有元素是否都必须是广义半 Clifford。除了 Cui 等人发现的对角门群之外,我们还表明 Clifford 层次结构中还包含许多非同构(对角门群)广义对称群。最后,作为此分类的应用,我们研究了由本文列举的群的结构给出的横向门的限制,这可能具有独立的兴趣。
局部和时间周期性动力学类似于随机统一的数量?在当前的工作中,我们使用量子计算中的Clifford形式主义来解决这个问题。我们分析了一个无序的浮标模型,其特征是一个空间维度的局部,时间周期和随机量子电路。我们观察到,进化操作员有时会享受额外的对称性,而这些对称性是该时期的半英尺倍数。这样,我们证明,在整个系统中散布任何初始扰动后,当所有量子都与Pauli操作员测量所有量子器时,都无法将进化运算符与(HAAR)随机统一区分开。随着时间的流逝,这种不可区分性会降低,这与(时间依赖性)随机电路的情况更高。我们还证明保利操作员的演变显示了一种混合形式。这些结果要求局部子系统的维度很大。在相反的策略中,我们的系统显示出一种新型的定位形式,该定位形式是由有效的单方面壁的出现产生的,这防止了扰动朝着一个方向而不是另一个方向越过壁。
该谅解备忘录是在二十国集团领导人峰会期间签署的,旨在为加速区域经济复苏和促进包容性增长做出贡献。跨境支付互联互通的实施旨在支持和促进跨境贸易、投资、金融深化、汇款、旅游和其他经济活动,以及该地区更具包容性的金融生态系统。微型、小型和中型企业尤其有望从此次合作中受益,因为这将促进它们参与国际市场。合作将包括多种模式,包括二维码和快速支付。
S. Sang 和 TH Hsieh,Phys.牧师研究 3, 023200 (2021)。 A. Lavasani、Y. Alavirad 和 M. Barkeshli,Nat.物理。 17, 342–347 (2021)。
“国际人权不仅是我本科和研究生时期关注的重点,也是我作为富布赖特研究员关注的重点,因此我认为这是一个很好的机会,可以利用我过去的经验并发展我在 ESG 方面的专业知识。对于公司中和我级别相当的人来说,从头到尾参与如此引人注目的事情也令人兴奋,所以我感到非常幸运。我学到的最宝贵的一课是如何以一种鼓励成长和支持改进努力的方式来构建批评。”
我们解决了Clifford等轴测汇编的问题,即如何将Clifford等轴测图合成为可执行的量子电路。我们提出了一个简单的合成框架,该框架仅利用Clifford组的基本特性和一个符号组的一个方程式。我们通过表明文献的几种正常形式是天然推论来强调框架的多功能性。我们恢复了在LNN档案馆执行Clifford电路所必需的两量Qubit Gate深度的状态,并与另一项工作同时。我们还提出了针对Clifford等法的实用合成算法,重点是Clifford操作员,图形状态和Pauli旋转的Codia -Gonalization。基准表明,与最新方法相比,在所有三种情况下,我们都会改善2 Q量的门计数和随机实例的深度。我们还改善了实用量子化学实验的执行。
摘要 — 变分量子算法 (VQA) 依赖于参数化单元电路针对目标函数的迭代优化。由于量子机器噪声大且资源昂贵,因此必须适当选择 VQA 的假设,并使其初始参数尽可能接近最优值,因为这将改善并加速算法在量子设备上执行的精确收敛。这项工作通过提出 CAFQA(一种用于量子精度的 Clifford 假设)来解决寻找初始假设参数的问题。CAFQA 假设是一种仅使用 Clifford 门构建的硬件高效电路。在此假设中,通过经典模拟在 Clifford 参数空间中进行有效搜索来选择可调门的初始参数,从而产生合适的稳定器状态。结果表明,产生的稳定器状态始终等于或优于传统的经典初始化方法(例如 Hartree-Fock),即找到合适的计算基态,并且通常在量子设备上执行和探索之前就产生高精度估计。此外,该技术适用于经典计算,因为 a) 仅 Clifford 量子电路可以在多项式时间内进行经典精确模拟,以及 b) 离散 Clifford 空间虽然量子比特数量呈指数级增长,但可以通过贝叶斯优化进行有效搜索。对于变分量子特征求解器 (VQE) 任务(即估计多达 20 个量子比特的分子系统的基态能量),CAFQA 的 Clifford Ansatz 实现了接近 99% 的平均准确度,并且能够恢复高达 99.99% 的 Hartree-Fock 初始化分子相关能量。值得注意的是,该方法的可扩展性允许对具有挑战性的铬二聚体 (Cr 2 ) 进行初步的基态能量估计,其精度高于 Hartree-Fock 所达到的精度。CAFQA 还在优化任务上进行了评估,特别是高达 18 个量子比特的 MAXCUT 问题。借助 CAFQA 的高精度初始化,VQA 的收敛速度加快了 2.5 倍。总之,这项工作表明稳定器状态是变分算法的高精度假设初始化。此外,它突出了量子启发式经典技术作为 NISQ 时代及以后 VQA 的替代方案和支持方法的潜力。
