南亚印度人中临床可操作的肥厚性心肌病基因 Vinay J Rao a,b ,理学硕士,Thiagarajan Sairam a ,哲学博士,Andiappan Rathinavel c ,MCh,,Kurukkanparampil Sreedharan Mohanan d ,医学博士,Hisham Ahamed e ,医学博士,Jayaprakash Shenthar f ,医学博士,Perundurai S Dhandapany a,* ,哲学博士。a 心血管发育和疾病机制,干细胞科学和再生医学研究所(DBT-inStem),班加罗尔,印度。b 跨学科健康科学与技术大学,Yelahanka,班加罗尔,印度。c 心血管胸外科系,马杜赖医学院和政府 Rajaji 医院,马杜赖,印度。d 心脏病学系,政府医学院,科泽科德,印度。 e 肥厚性心肌病中心,Amrita 医学科学院,Amrita Viswa Vidyapeetham(Amrita 大学),印度科钦。f 心脏病学系,Sri Jayadeva 心血管科学与研究研究所,印度班加罗尔。* 联系人:Perundurai S Dhandapany;dhan@instem.res.in 摘要背景:原发性肥厚性心肌病 (HCM) 主要是遗传性疾病,在没有其他心脏和全身代谢疾病的情况下导致左心室肥大。目前,关于南亚印度人 (SAI) 中原发性 HCM 临床可操作基因变异的流行率的数据有限,这对于尽量减少对祖先特异性变异的解释差异是必要的。目的:ClinGen 遗传性心血管疾病 (HCVD) 基因管理专家小组根据临床相关性将 HCM 致病基因分为五类:明确、强、中等、有限和有争议。然而,缺乏对 SAI 中这种分类的全面研究。方法:对 335 名原发性 SAI-HCM 患者进行全外显子组测序,包括所有已知的心血管基因和临床可操作的基因类别,以确定它们的等位基因频率。结果:SAI-HCM 外显子组在 335 例中的 119 例 (35.52%) 中揭示了 26 个临床可操作基因中总共 194 个 P/LP 和 VUS。与其他全球 HCM 队列相比,SAI-HCM 队列在 12 个明确类别基因中表现出的变异明显较少(17.33% vs. 41.21%,P = 0.0003)。对于 5 个强/中等基因,SAI-HCM 队列与其他全球 HCM 队列之间无显著差异(2.59% vs. 2.49%,P = 1)。在 21 个有限且有争议的基因中,MYH6 在 SAI-HCM 队列中的变异流行率明显高于其他全球 HCM 队列(5.07% vs. 1.67%,P = 0.0408)。
分类(Yorczyk等,2015; Kim等,2019),主要与ACMG AMP准则准则允许的主观性和不确定性程度有关。他们建议在解释过程中使用28个标准来区分:良性(可能是良性)的意义(VUS),可能是致病性和致病性变体。但是,仅在临床实践中获得这些标准的一部分,并且必须使用带注释的变体集合。为提供这样的资源,已经制定了各种倡议,包括Clinvar(Landrum等,2016),Clingen(Savatt等,2018),Varsome(Kopanos等,2019)和Intervar(Li and Wang,2017)。这些从专家和各种资源中收集数据,并可以为未报告的变体提供解释。然而,此自动化过程有时可能会产生不适当的结果,并且应谨慎查看数据。,如果我们专注于分类证据,一方面,最具挑战性的标准之一是PM1“位于突变的热点和/或关键和完善的功能域(例如,酶的活性位点),没有良性变化”,这是在报告的病例中使用的约10%(Amendola等人,2016年)。要提取此信息,自动化系统主要依赖Uniprot(Uniprot联盟。2017)和“ dbnsfp31a_interpro”,该数据库是DBNSFP(Liu等,2011; Liu等,2016)和Interpro(Mitchell等,2019)的域信息数据库,可在蛋白质家族,域,域和功能性点上包含有关蛋白质家族和功能性的信息。已经使用保守域数据库(CDD)(Marchler-Bauer等,2015)制定了其他计划,例如Subrvis分数(Gussow等,2016),旨在评估基因子区域对变体的不耐受性。通常,PM1标准与突变簇的功能区域的广泛视图相关联。然而,很难使用,因为这种聚类的定义不足和理解,如其在Vasome中的各种解释所示(Kopanos等人,2019年)和Intervar(Li and Wang,2017)。它也可能受到基因非人类疾病的兴趣和分类的变异次数的高度偏见。另一方面,最常用的证据是PM2/BA1/BS1“人口数据库中缺失的变异或等位基因频率太高,对于该疾病而言,据报道约有50%的病例(Amendola等人,2016年)。该标准的假设非常简单:如果已报告了普通人群频率高的变体,则不能是一种罕见的致病变异,否则该疾病的频率将更高;如果从未报道过变体,或者频率很低,则可能是一种罕见的致病变异。这些信息从大尺度基因组/外显子组测序项目中很大,大多数人从侏儒(Koch,2020年)或人口数据库中收集了这些信息,例如阿巴拉姆(巴西人人口)(Naslavsky等人)(Naslavsky等人,更大的Midder Midder eali Milder Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide Elide eLDEL,202)人口)(Scott等,2016)。然而,人类进化不允许变异的基因组饱和,其中一些在遗传漂移引起的人群中非常罕见(Bach,2019)。的确,如果人口足够大,几代人几代人的失踪率很可能会导致其消失,而只有少数几代人将在人群中固定。因此,尽管人们认识到,从人类中出现了每一代人的50至100个变种,但这些事件中的大多数在进化过程中都丢失了,这解释了为什么我们的基因组中不存在所有中性替代。另一种观点是基于一个简单的假设,即78亿活着人类中每一个中的50至100从头变体都应该产生与生命兼容的每种核苷酸变化