摘要:到公元前二世纪中叶,甚至可能更早,钟表时间已广为人知:从罗马到巴克特里亚,从统治者到普通百姓。这令人震惊,因为希腊罗马钟表时间直到公元前 300 年才完全概念化。在本文中,我旨在通过研究社会中的哪些群体最先采用钟表时间以及他们如何向他人传达这一概念及其相关实践来解释其快速传播。我利用了 Everett Rogers 的创新传播模型,该模型确定了各种采用者类别及其典型特征。我确定了两组早期采用钟表时间的人。首先,是知识中心亚历山大和雅典的国际精英。通过这个流动群体的旅行和文字,将时钟作为声望纪念碑的想法以及将时钟时间用于精确安排的聚会的想法在其他城市中心迅速获得关注。然而,更重要的早期采用者是希腊士兵,特别是托勒密教士。军队已经有了仔细记录时间的传统。由于军队依靠相当一部分男性人口的直接参与,因此军队有直接的方式将这一创新的使用传达给广大非精英人群。通过雇佣兵,军事实践也很容易从一支希腊军队传播到另一支。回到家后,士兵们将他们的时间制度带到体育馆(以及其他地方),体育馆在向下一代传授人工时钟时间概念方面发挥了重要作用。
摘要:到公元前二世纪中叶,甚至可能更早,钟表时间已广为人知:从罗马到巴克特里亚,从统治者到普通百姓。这令人震惊,因为希腊罗马钟表时间直到公元前 300 年才完全概念化。在本文中,我旨在通过研究社会中的哪些群体最先采用钟表时间以及他们如何向他人传达这一概念及其相关实践来解释其快速传播。我利用了 Everett Rogers 的创新传播模型,该模型确定了各种采用者类别及其典型特征。我确定了两组早期采用钟表时间的人。首先,是知识中心亚历山大和雅典的国际精英。通过这个流动群体的旅行和文字,将时钟作为声望纪念碑的想法以及将时钟时间用于精确安排的聚会的想法在其他城市中心迅速获得关注。然而,更重要的早期采用者是希腊士兵,特别是托勒密教士。军队已经有了仔细记录时间的传统。由于军队依靠相当一部分男性人口的直接参与,因此军队有直接的方式将这一创新的使用传达给广大非精英人群。通过雇佣兵,军事实践也很容易从一支希腊军队传播到另一支。回到家后,士兵们将他们的时间制度带到体育馆(以及其他地方),体育馆在向下一代传授人工时钟时间概念方面发挥了重要作用。
同位素 229 Th 是已知的唯一一种在几电子伏特能量范围内具有激发态 229m Th 的原子核,这是原子价壳层中电子的典型跃迁能量,但比常见的核激发能低四个数量级。人们提出了许多利用这种独特核系统的应用,该系统可通过光学方法实现。其中最有希望的是一种性能优于现有原子计时器的高精度核钟。我们在此介绍 229m Th 2+ 超精细结构的激光光谱研究,得出基本核特性的值,即磁偶极矩和电四极矩以及核电荷半径。继最近直接检测到这种长期寻找的异构体之后,我们现在对其核结构进行了详细的了解,并提出了一种非破坏性光学检测方法。
被困在光场中的超冷碱土原子是丰富的物理系统,是量子信息处理 [ 1 – 4 ]、多体哈密顿量的量子模拟 [ 5 – 9 ] 和量子计量 [ 10 – 14 ] 的有吸引力的候选者。在每种情况下,同时询问许多原子都有助于提高测量精度,但也会产生高原子密度,并且有可能在具有多个原子的晶格位置发生原子间碰撞。对于量子信息和模拟,这些相互作用可能是一个关键特征;然而,对于量子计量,它们带来了不受欢迎的复杂性。例如,碰撞会导致原子钟中密度相关的频率偏移。在所有情况下,都需要很好地理解和控制这些相互作用。为了限制晶格钟中的相互作用,提出了使用超冷自旋极化费米子来利用 s 波碰撞的费米抑制,同时冻结更高的分波贡献。这种费米抑制源于量子统计,它规定相同的费米子粒子只能通过奇数分波碰撞。然而,在费米子 87 Sr(I ¼ 9 = 2)[ 11 , 15 , 16 ] 和 171 Yb(I ¼ 1 = 2)[ 12 ] 中测量到了微小的碰撞偏移,这可能会损害晶格钟的最终精度。我们发现,对于 87 Sr,即使最初无法区分的费米子,s 波碰撞也可能发生 [ 15 , 17 – 19 ]。这些碰撞之所以能够发生,是因为轻原子相互作用引入了一定程度的不均匀性,使费米子变得略微可区分。相比之下,使用 171 Yb,我们在此强调了 p 波碰撞在费米子晶格时钟系统中可以发挥的重要作用。在量子统计的帮助下,我们通过以最先进的精度进行测量以及定量理论模型,展示了 Yb 晶格时钟中冷碰撞的完整图像。此外,我们展示了消除碰撞偏移的新技术,可用于大大降低时钟不确定性。为了简化涉及许多晶格陷阱两级原子相互作用碰撞的复杂系统
衰老是一个多因素过程,可能源于生物体损伤的积累和/或维护和修复机制的衰退,最终决定了它们的寿命。在我们的综述中,我们重点关注衰老大脑所经历的形态和功能变化,这些变化影响了人类和啮齿动物模型中的睡眠和昼夜节律。尽管这两个物种都具有哺乳动物的特征,但在几个实验层面上发现了差异,我们在本综述中概述了这些差异。此外,我们描述了首选分析的一些挑战,并建议遵循统一的路线,以便可以顺利比较研究结果。最后,我们讨论了潜在的干预措施,并强调了体育锻炼作为一种有益的生活方式干预的影响,以及它对健康衰老和长寿的影响。我们强调,即使是适度的年龄匹配运动也能够改善睡眠和昼夜节律方面的几种衰老特征,与所研究的物种无关。
用于精确分析,在四26天内分析了三个不同的等离子体池,总共有312个。在短期可变性分析中,分析了两个队列:26个健康个体的阿斯利康MFO队列(中位年龄20岁)和70名青春期前中国妇女(中位年龄22.5)的队列在3个月内监测。长期可变性分析涉及两名47岁和57岁的成年男性,分别监测了5和10年。分别每3个月零3周收集样本。IgG n-聚糖分析遵循了独立的方法,通过分离IgG,其随后的变性和脱糖基化,然后进行聚糖清理和标记。毛细血管凝胶电泳用激光诱导的荧光(CGE-LIF)和超级性能液相色谱分析用于聚糖分析。统计分析
摘要 颜色分选机通过传感器检查谷物,并利用颜色差异通过短时间的压缩空气脉冲去除污染物。谷物分选机在碾米行业中已成功使用多年。颜色分选机用于谷物清洁,以去除灰尘颗粒、黑尖、烧焦、其他变色谷物和其他内部污染物等不需要的材料。当今先进的颜色传感器坚固、紧凑、维护成本低且能耗极低。因此,这些颜色传感器可以考虑纳入任何现代谷物清洁厂。本文旨在为谷物分选机开发 Calib_IO、波形生成和时钟生成模块,以去除灰尘颗粒、黑尖、烧焦、其他变色谷物和其他内部污染物等不需要的材料,并提高其处理速度。时钟生成模块是使用 Quartus II 软件设计的,并在 Cyclone IV E(FPGA KIT)中实现,其中包含用于谷物分选的紧凑型颜色传感器。关键词:谷物分选、颜色分选机、Calib_IO、波形生成、时钟生成
光原子时钟和光学时间传输的最新进展使得针对基本物理和时机应用测试的精确计量学方面有了新的可能性。在这里,我们描述了一个太空任务概念,该概念将将最先进的光原子钟放在地球周围的怪异轨道上。高稳定性激光链路将将轨道航天器上的相对时间连接到地球站。此任务的主要目标是测试重力红移,这是一种经典相对论的经典测试,其灵敏度超出了当前限制的30,000倍。其他科学目标包括其他相对论测试,对暗物质的搜索和基本常数的漂移以及建立高精度的国际时间/地理参考。
随着人口衰老的范围,预计到2030年,世界上近20%的人口将超过65岁,到2050年,这一数字预计将达到16亿(Feng等,2023a)。癌症的特征是异常的细胞增殖和分化,继续对全球健康构成显着威胁(Hanahan,2022; Shen等,2022; Feng等,2023b; Wang等,2023)。在2020年,全世界记录了大约1900万新的癌症病例和超过1000万癌症相关的死亡(Sung等,2021)。特别是在中国,同年有457万例新癌症病例和3000万例癌症死亡(He and Ke,2023年)。传统的癌症治疗包括放射治疗,化学疗法和手术(Jin等,2022; Sirhan等,2022; Xing等,2022; Cossociate疗法,2023年),而分子靶向的治疗和免疫检查点抑制剂已转化了肿瘤学(Chen等人(Chen et al。,20222222222222; Chan et y。 Al。,2023)。尽管取得了进步,但治疗对患者生存和生活质量的不利影响仍然是癌症治疗中的紧迫挑战(Zhang and Zhang,2020; Peng等,2022),使患者管理变得复杂(Wang YH。等,2020; Mokhtari-Hessari和Montazeri,2020)。 高通量测序是一种开创性的分子生物学技术,它推动了新的肿瘤研究方向(Walter等,2022; Larson等,2023)。 与形成对比等,2020; Mokhtari-Hessari和Montazeri,2020)。高通量测序是一种开创性的分子生物学技术,它推动了新的肿瘤研究方向(Walter等,2022; Larson等,2023)。与