根据FCC规则的第15部分,已测试并发现该设备符合B类数字设备的限制。这些限制旨在提供合理的保护,以防止住宅安装中有害干扰。此设备会生成,用途并可以辐射射频能量,如果未按照说明进行安装和使用,可能会对无线电通信产生有害的干扰。但是,不能保证在特定安装中不会发生干扰。如果该设备确实会对无线电或电视接收造成有害干扰,可以通过关闭设备关闭并打开设备来确定,鼓励用户尝试通过以下一项或多项措施来纠正干扰:•重新定位或重新安置接收天线。•增加设备和接收器之间的分离。•将设备连接到与接收器连接的电路上的电路上的插座。•咨询经销商或经验丰富的广播/电视
1. 范围 1.1 总则。本规范定义了 Vectron 生产的高可靠性混合时钟振荡器的设计、组装和功能评估。根据本规范交付的设备代表了为高级应用和扩展环境开发、实施和认证的标准化零件、材料和工艺 (PMP) 计划。 1.2 应用概述。这些产品所代表的设计主要为 MIL-Aerospace 社区开发。OS-68338 中嵌入的较小设计谱系和筛选选项通过为定制硬件提供军事或加固 COTS 环境所需的机械、装配和可靠性保证措施,弥合了太空和 COTS 硬件之间的差距。 2. 适用文件 2.1 规范和标准。以下规范和标准构成本文件的一部分,范围如下。除非另有规定,否则在报价日期当前有效的问题将是产品基准。如果本文引用的任何参考文献的文本发生冲突,则以本文件的文本为准。
O 型血的人患注意力缺陷症的风险可能更大;A 型血的人可能更容易患强迫症,儿童患注意力缺陷症的风险可能更大;B 型血的儿童患注意力缺陷症的风险可能较低。然而,这些关联很弱,在决定疾病结果方面,许多其他因素可能更为重要。这类疾病在家族中没有明确的遗传模式,而且有多个遗传联系,可能会因遗传多样性的减少而受到复杂的影响。
这是已接受出版的作者手稿,已经过完整的同行评审,但尚未经过文字编辑、排版、分页和校对过程,这可能会导致此版本与记录版本之间存在差异。请引用本文 doi:10.1002/FSB2.21803
由于地球的旋转,自然环境表现出接近24小时的浅黑色昼夜周期。为了适应这种能量摄入模式,生物体在长时间(称为昼夜节律或生物时钟)中形成了24小时的节奏昼夜周期。随着生物钟研究的逐步发展,越来越明显的是,昼夜节律的破坏与2型糖尿病的发生密切相关(T2D)。为了进一步了解T2D和生物钟的研究进展,本文回顾了生物钟与葡萄糖代谢之间的相关性,并分析了其潜在机制。基于此,我们讨论了导致昼夜节律中断及其对发展T2D风险的影响的潜在因素,旨在探索未来预防和治疗T2D的新的可能的干预措施。为了适应这种变化,人体形成了涉及各种基因,蛋白质和其他分子的内部生物时钟,为了适应这种变化。主要机制是以时钟/BMAL1异二聚体为中心的转录翻译反馈回路。构成该循环的重要昼夜节律基因的表达可以调节与T2DM相关的血糖性状,例如葡萄糖摄取,脂肪代谢,胰岛素分泌/胰素食的分泌和敏感性,以及各种外围组织和器官的敏感性。此外,在昼夜节律下的睡眠,光和饮食因素也会影响T2DM的发生。
摘要在最近的几项政府委托报告和国家量子战略,弹性PNT政策框架和2023年国家风险登记册中的几项政府委托报告和特征中强调了英国对GNSS的依赖的脆弱性。持有原子钟是准确的本地计时源,可以为关键的国家基础设施(CNI)提供弹性的精度时间,以代替GNSS定时信号。本文档介绍了英国的持有原子钟技术的摘要,这是一项基准,以帮助支持英国主权商业保留原子钟制造能力的未来发展。这些持有时钟将主要用于英国定位,导航和计时(PNT)申请,包括英国CNI的规定。本文档总结了几个应用程序领域(现在和将来)的时机要求和标准,英国当前的原子钟开发进展以及英国当前的供应链和工业能力。在本报告的末尾,我们描述了我们对为UKS国家时机中心(NTC),未来的国家时机基础设施和UK CNI最终用户提供必要条款所需的协调英国持有时钟开发计划的基本要素。
uan-Yu Jau 正在努力制造世界上最小的原子钟,一种可以极其精确地计时的设备。如果成功,他和他在桑迪亚的团队将制造出比方糖还小的原子钟。但他并不是唯一一个挑战微型钟表极限的人。去年,美国国防高级研究计划局向研究团队发出挑战,要求制造更小、更精确的时钟。Yuan-Yu 领导着从事这项工作的桑迪亚团队。Yuan-Yu 说:“他们希望所有东西的体积都在 1 立方厘米,目前还没有这种尺寸的原子钟。”他的核心设计甚至更小——长约 1 厘米,宽和高仅为 2 毫米,总体积为 0.04 立方厘米。DARPA 要求这些设备在一周后准确度在百万分之一秒以内。
晚上的光对哺乳动物的生理和行为具有很强的影响。它会影响人类的情绪,该情绪被用作光治疗,并已被证明可以重置昼夜节律时钟(SCN)。此重置对于将生理和生化时机排列到环境光线周期至关重要。在这里我们提供了证据表明,Zeitgeber时间(ZT)22的光也通过激活侧向Habenula(LHB)中的时钟基因周期1(PER1)来影响小鼠的情绪相关行为,这是一个已知调节情绪相关行为的大脑区域。我们表明,在小鼠中完全缺失PER1导致抑郁症的行为和光对这种行为的有益影响的丧失。相比之下,LHB区域中PER1的特定缺失不会影响与情绪相关的行为,而是支持光的有益作用。RNA序列分析在中唇型多巴形系统中揭示了在ZT22处光脉冲后的基因表达的深刻变化。在伏隔核(NAC)中,气味和G蛋白偶联受体signaling的感觉感知最大。有趣的是,这些基因中的大多数在PER1敲除动物中不受影响,表明光诱导PER1是大脑中光中含有基因表达的过滤器。共同表明,光线至少部分通过LHB中的PER1诱导而影响小鼠的情绪相关行为,并影响中溶胶多巴胺能系统中与情绪相关的行为和信号机制的影响。
摘要原子技术的商业化需要用紧凑和可制造的光学平台代替实验室规模的激光设置。可以通过集成的光子学和元图光学的组合在芯片上生成自由空间的复杂布置。在这项工作中,我们使用平流芯片键合将这两种技术结合在一起,并展示了一种集成的光学体系结构,以实现紧凑的跨原子钟。我们的平面设计包括两个共对准的磁磁陷阱中的十二个光束。这些梁位于芯片上方,在中央位置与直径高达1厘米的中心位置相交。我们的设计还包括两个在晶格和时钟波长的联合传播光束。这些梁在共线和垂直方向发射以探测磁陷阱的中心,在那里它们的直径为≈100µm。使用这些设备,我们证明了我们的集成光子平台可扩展到任意数量的光束,每个光束具有不同的波长,几何形状和极化。
虽然具有长相干时间的数据量子比特对于量子信息的存储至关重要,但辅助量子比特对于容错量子计算的量子纠错 (QEC) 至关重要。光镊阵列的最新发展,例如大规模量子比特阵列的制备和高保真门操作,为实现 QEC 协议提供了潜力,而下一个重要挑战之一是控制和检测辅助量子比特,同时尽量减少原子损失和串扰。在这里,我们介绍了由双同位素镱 (Yb) 原子阵列组成的混合系统的实现,其中我们可以利用费米子 171 Yb 的核自旋量子比特作为数据量子比特,利用玻色子 174 Yb 的光时钟量子比特作为辅助量子比特,具有无损量子比特读出能力。我们评估了量子比特之间的串扰对 174 Yb 成像光的核自旋量子比特相干性的影响。对于 174 Yb 的 Hahn 回波序列,使用 399 nm 探针和 556 nm 冷却光束,我们观察到在 20 ms 曝光下保留了 99.1 (1.8)% 的相干性,产生了 0.9992 的鉴别保真度和 0.988 的生存概率。使用 556 nm 探测光束的 Ramsey 序列对相干性的影响可以忽略不计,这表明未来低串扰测量可能会有所改善。这一结果凸显了混合 Yb 原子阵列在基于辅助量子比特的 QEC 协议的中路测量中的潜力。