无缝克隆方法 [ 1 ] 是传统限制性位点克隆的绝佳替代方案,其优势在于只需单管反应,即可在短短 30 分钟内无缝组装多个片段(图 1)。此方法包括 Gibson Assembly 和 Golden Gate,可实现定向克隆,无需特定的限制序列。无缝克隆依赖于使用由嗜温外切酶、嗜热连接酶和高保真聚合酶组成的酶混合物。由于组装需要两端都有完整的序列,因此该方法可以筛选出截短的序列或末端有错误的序列。我们建议在组装和大多数克隆应用中使用无缝克隆方法。
图3。凝胶电泳图像捕获超螺旋的,未消除的PUC19(泳道B);线性PUC19用Hindiii(泳道C)消化; PUC19用苯酚(150 ppm)升高,并消化了印度菌(D); PUC19用EDTA(20毫米)和Hindiii消化(Lane E)升高。在1.2%的琼脂糖凝胶上运行。梯子在车道A中显示为基座对。
该项目是机器学习域,并且使用高级通用编程语言Python完成了实现。我们的目标是设计一个模型För,根据用户选择将任何文本转换为两个步骤,即克隆目标语音和文本到语音综合的声音。我们比较了三个模型,发现SV2TTS符合我们的要求。尽管我们可以理解,语音克隆是滥用该技术的可能性的领域,但我们也不能否认合成文本是高科技的进步和人为形成的语音形成,鉴于要说的文本。
量子密码系统的密码分析通常涉及寻找针对底层协议的最佳对抗攻击策略。量子攻击建模的核心原则通常归结为对手克隆未知量子态并由此提取有意义的秘密信息的能力。由于电路深度较大或在许多情况下未知,显式最佳攻击策略通常需要大量计算资源。在这里,我们介绍了变分量子克隆 (VarQlone),这是一种基于量子机器学习的密码分析算法,它允许对手使用混合经典量子技术训练的短深度量子电路获得最佳近似克隆策略。该算法包含具有理论保证的具有操作意义的成本函数、量子电路结构学习和基于梯度下降的优化。我们的方法能够端到端发现硬件高效的量子电路来克隆特定的量子态系列,我们在 Rigetti Aspen 量子硬件上的实现中展示了这一点。我们将这些结果与量子密码原语联系起来,并推导出由 VarQlone 促进的显式攻击。我们期望量子机器学习将成为改进当前和未来量子加密协议攻击的资源。
图 1. BioXp 上的 Golden Gate 组装。Golden Gate 组装概览。要克隆的插入 DNA 带有侧翼 GG 酶识别位点(BsaI 和/或 BsmBI),可以作为合成基因片段或 PCR 扩增子(1A)和(1B)或预克隆载体格式(1C)获取。用户可以输入任何具有兼容 GG 突出端(以粉色和紫色显示)的所需目标载体(2)。用户在 BioXp 3250 上输入 96 孔板和 GG 克隆条(4)。GG 克隆产品在 BioXp 运行后作为输出交付(5)。
CEPT 补充剂可促进健康单细胞克隆的建立。使用补充有 CEPT 混合物的培养基生成并接种微流体平台的克隆细胞系显示出与亲本系相似的增殖率和对单细胞解离的敏感性(图 3)。新的克隆系在培养中保持未分化状态,表达预期的多能性标记,并通过定向分化方法展示多能性。使用 CEPT 补充剂生成的克隆细胞系保持正常核型,在基因组癌症热点处未检测到染色体异常或 p53 突变。
机器人学习任务是非常密集的和特定于硬件的。因此,使用可用于训练机器人操纵剂的不同离线示范数据集应对这些挑战的途径非常吸引人。火车传输测试结束(TOTO)的基准提供了一个策划的开源数据集,用于离线培训,主要由专家数据组成,还提供了公共离线RL和行为克隆代理的基准分数。在本文中,我们引入了Diffclone,这是一种通过基于扩散的策略学习增强行为克隆剂的离线算法,并在测试时测量了我们方法对真实在线物理机器人的疗效。这也是我们正式提交在Neurips 2023举行的火车及其对方(TOTO)基准挑战的提交。我们尝试了预先训练的视觉表示和试剂策略。在我们的实验中,我们发现MOCO FINETENED RESNET50与其他固定表示形式相比表现最好。目标状态条件和对过渡的映射导致成功率和卑鄙的回报提高。至于代理策略,我们开发了Diffclone,这是一种使用条件扩散改善的行为克隆剂。
使用悬垂引物在PCR产物的末端添加悬垂序列来扩增感兴趣的序列。悬垂序列的长度取决于用于吉布森组件的商业套件。如果使用了来自新英格兰Biolabs(NEB)的HIFI组装主混合物,则足够的20个碱基对。
非编码重复膨胀会导致几种神经退行性疾病,例如脆弱的X综合征,肌萎缩性侧面硬化症/额颞痴呆和脊椎没收(SCA31)。必须研究这种重复的序列,以了解疾病机制并使用新颖的方法来防止它们。然而,合成寡核苷酸的合成重复序列由于不稳定,缺乏独特的序列而表现出二级结构的倾向。综合重复序列通常很难。在这里,我们采用了滚动圆扩增技术,使用微小的合成单链圆形DNA作为模板获得无缝的长重复序列。我们获得了2.5 - 3 KBP不间断的TGGAA重复序列,在SCA31中观察到,并使用限制消化,Sanger和Nanobore测序对其进行了确认。这种无细胞的体外克隆方法可能适用于其他重复膨胀疾病,并用于产生动物和细胞培养模型,以研究体内和体外的重复扩张疾病。
仅供研究使用。不可用于诊断程序。© 2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。Amersham 和 Typhoon 是 Cytiva 的商标。SnapGene 是 GSL Biotech LLC 的商标。Gibson Assembly 是 Telesis Bio, Inc. 的商标,经许可和授权使用。APN-9114086 1024
