免疫疗法已成为多种类型癌症(例如黑色素瘤)的护理标准。但是,它可以诱导毒性,包括免疫检查点抑制剂诱导的结肠炎(CIC)。CIC具有炎症性肠病(IBD)的几种临床,组织学,生物学和治疗特征。艰难梭菌感染(CDI)会使IBD的演变变得复杂。我们旨在表征抗CTLA-4和抗PD-1的CDI与CIC之间的关联。来自2010年至2021年的抗CTLA-4和抗PD-1的九个中心的患者和抗PD-1的患者包括在2010年至2021年。主要终点是CIC的出现。次要终点是发现CDI的发现。包括18名患者。用抗PD-1,四个用抗CTLA-4和抗PD-1与抗PD-1与抗CTLA-4结合使用抗PD-1,四个。在18例患者中,有6例分离出CDI,而12例患有CIC和CDI。在这12位患者中,有8例CIC患有CDI复杂,三个同时使用CIC和CDI,其中1例患有CDI,其次是CIC。CDI在三名患者中是暴发的。内窥镜和组织学特征并未具体区分CDI与CIC。CDI
摘要:肉毒乳梭交产生肉毒杆菌毒素(BONTS),导致一种罕见但致命的食物中毒类型,称为食物中毒。本综述旨在提供有关细菌,孢子,毒素和肉毒杆菌的信息,并描述使用物理治疗(例如,加热,压力,辐照和其他新兴技术)的使用来控制食物中这种生物学危害。由于这种细菌的孢子可以抵抗各种严酷的环境条件,例如高温,因此,A型肉毒杆菌孢子的12杆孢子的热灭活仍然是食品商业灭菌的标准。然而,非热物理治疗的最新进展是对热灭菌的替代方案,并有所限制。低 - (<2 kgy)和培养基(3-5 kgy) - 剂量电离辐射分别有效地减少营养细胞和孢子的对数。但是,需要非常高的剂量(> 10 kgy)才能灭活BONT。高压加工(HPP)即使在1.5 GPA时也不会使孢子失活,并且需要热量组合才能实现其目标。其他新兴技术也对植物细胞和孢子表现出了一些希望。但是,它们对肉毒杆菌的应用非常有限。与细菌有关的各种因素(例如,营养阶段,生长条件,损伤状况,细菌类型等)食物矩阵(例如成分,状态,pH,温度,AW等。)和该方法(例如电源,能量,频率,从源到目标等的距离等)影响这些处理对肉毒杆菌的效率。此外,不同物理技术的作用方式是不同的,这提供了结合不同物理治疗方法以实现添加剂和/或协同作用的机会。本评论旨在指导决策者,研究人员和教育者使用物理治疗来控制肉毒杆菌危害。
摘要:需要更绿色的过程满足平台化学物质的需求,以及从人类活动中重复使用CO 2的可能性,最近鼓励了对生物电化学系统(BESS)的设置,优化和开发的研究,以从无线电碳(Co 2,Hco 3-co 3 - )中进行有机化合物的电合合成。在本研究中,我们测试了糖氯丁基乙二醇N1-4(DSMZ 14923)的能力,从而产生乙酸盐和D-3-羟基丁酸的D-3-羟基丁酸,从CO 2:N 2气体中存在的无机碳中产生。同时,我们测试了Shewanella Oneidensis MR1和铜绿假单胞菌PA1430/CO1财团的能力,以提供降低的能力以维持阴极的碳同化。我们测试了具有相同布局,接种物和介质的三个不同系统的性能,但是使用1.5 V外部电压,1000Ω外部负载,并且没有电极或外部设备之间的任何连接(开路电压,OCV)。我们将CO 2同化速率和代谢产物的产生(甲酸盐,乙酸3-D-羟基丁酸)与非电气对照培养物中获得的值进行了比较,并估计了我们的BESS用来同化1摩尔的CO 2的能量。我们的结果表明,当微生物燃料电池(MFC)连接到1000Ω外部电阻器时,糖链球菌NT-1的最大CO 2同化(95.5%),并以Shewanella / Pseudomonas conscontium作为电子来源。此外,我们检测到C. saccharoperbutylacetonicum nt-1的代谢发生了变化,因为它在BES中的活性延长。我们的结果开放了在碳捕获和平台化学物质的电气合成中利用BES的新观点。
CRISPR 技术的最新发展为改进梭菌属专用的基因组编辑工具开辟了新的可能性。在本研究中,我们改进了基于该技术的双质粒工具,以便对产生丙酮/丁醇/乙醇 (ABE) 或异丙醇/丁醇/乙醇 (IBE) 混合溶剂的两种拜氏梭菌参考菌株的基因组进行无瘢痕修饰。在 NCIMB 8052 ABE 生产菌株中,SpoIIE 孢子形成因子编码基因的失活导致孢子形成缺陷的突变体,并且通过用功能性 spoIIE 基因补充突变菌株可以恢复此表型。此外,将真菌纤维素酶编码 celA 基因插入拜氏梭菌 NCIMB 8052 染色体中,产生具有内切葡聚糖酶活性的突变体。接下来,我们采用类似的双质粒方法对天然 IBE 产生菌株 C. beijerinckii DSM 6423 的基因组进行编辑,该菌株此前从未进行过基因工程改造。首先,删除赋予甲砜霉素抗性的 catB 基因,使该菌株与我们的双质粒编辑系统兼容。作为概念验证,我们在 C. beijerinckii DSM 6423 Δ catB 中使用了我们的双质粒系统,以去除内源性 pNF2 质粒,从而大幅提高转化效率。
François Wasels、Gwladys Chartier、Rémi Hocq、Nicolas Lopes Ferreira。CRISPR/Anti-CRISPR 基因组编辑方法强调了丙酮丁醇梭菌 DSM 792 中丁醇脱氢酶的协同作用。应用与环境微生物学,2020 年,86 (13),第 e00408-20 页。�10.1128/AEM.00408-20�。�hal-02913128�
Mahmoud M. Abotaleb 1* orcid:https://orcid.org/0000-000-0001-9303-539x Rasha G. Tawfik 2 Orcid:https://orcid.org/0000-0002-2-6286-3958 Dalia M.M. Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Orcid: https://orcid.org/0000-0002-7282-4346 Farida H. Mohamed 3 Orcid:https://orcid.org/000000-0000-0000-6357-5085 Shereen M. Aly M. Aly 3 Orcid 3 orcid: OrcID:https://orcid.org/0009-0005-9024-2859 Samir A. Nassif 1 OrcID:https://orcid.org/0000-0002-7907-0102 1中央实验室,用于评估兽医生物学(CLEVB),农业研究中心(农业研究中心(Arc))。 开罗,埃及。 2亚历山大大学兽医学院微生物学系。 埃及。 3农业研究中心(ARC)动物健康研究所免疫学系(AHRI)。 Dokki,埃及。 4厌氧菌,兽医血清和疫苗研究所(VSVRI),农业研究中心(ARC)。 开罗,埃及。Mahmoud M. Abotaleb 1* orcid:https://orcid.org/0000-000-0001-9303-539x Rasha G. Tawfik 2 Orcid:https://orcid.org/0000-0002-2-6286-3958 Dalia M.M. Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Omar 1 Orcid: https://orcid.org/0000-0002-7282-4346 Farida H. Mohamed 3 Orcid:https://orcid.org/000000-0000-0000-6357-5085 Shereen M. Aly M. Aly 3 Orcid 3 orcid: OrcID:https://orcid.org/0009-0005-9024-2859 Samir A. Nassif 1 OrcID:https://orcid.org/0000-0002-7907-0102 1中央实验室,用于评估兽医生物学(CLEVB),农业研究中心(农业研究中心(Arc))。开罗,埃及。2亚历山大大学兽医学院微生物学系。 埃及。 3农业研究中心(ARC)动物健康研究所免疫学系(AHRI)。 Dokki,埃及。 4厌氧菌,兽医血清和疫苗研究所(VSVRI),农业研究中心(ARC)。 开罗,埃及。2亚历山大大学兽医学院微生物学系。埃及。3农业研究中心(ARC)动物健康研究所免疫学系(AHRI)。 Dokki,埃及。 4厌氧菌,兽医血清和疫苗研究所(VSVRI),农业研究中心(ARC)。 开罗,埃及。3农业研究中心(ARC)动物健康研究所免疫学系(AHRI)。Dokki,埃及。4厌氧菌,兽医血清和疫苗研究所(VSVRI),农业研究中心(ARC)。开罗,埃及。
简单的摘要:坏死性肠炎(NE)主要是由球球菌和灌木梭状芽胞杆菌(CCP)引起的,这些(CCP)可以诱导肉鸡中的肠损伤和氧化应激。单宁酸(TA)是具有抗细菌,抗炎和抗氧化功能的天然多酚化合物。已经证明,补充可水解的饮食对肉鸡的生长和抗氧化能力具有有益的影响。然而,仍然需要阐明TA对具有NE条件的肉鸡中肠道健康和抗氧化功能的影响。因此,本研究旨在评估与CCP共同感染的肉鸡中TA对抗氧化功能,免疫力和肠壁的影响。结果表明,在饮食中添加1000 mg/kg ta可以改善空肠屏障,减轻空肠的炎症反应,并通过激活NRF2-keap1-keap1-keap1-keap1-keap1 pathway in ccp in ccp in cccp infected cccp infect in ccp infected nrf2-keap1-keap1 partection nrf2下游的肝脏和空肠的抗氧化能力。
骨稳态通过破骨细胞介导的骨吸收和成骨细胞介导的骨形成保持。绝经后妇女雌激素水平的急剧下降会导致破骨细胞过度活化,骨稳态受损和随后的骨质流失。肠道微生物组的变化会影响骨矿物质密度。但是,肠道微生物组在雌激素缺乏引起的骨质流失及其潜在机制中的作用仍然未知。在这项研究中,我们发现孢子菌的丰度(C. spor。) 及其衍生的代谢产物,吲哚丙酸(IPA)在卵巢切除(OVX)小鼠中降低。 体外测定法表明IPA抑制了破骨细胞的分化和功能。 在分子水平上,IPA抑制了核因子Kappa-配体(RANKL)诱导的妊娠X受体(PXR)泛素化和降解的受体激活剂,从而导致PXR与P65的持续结合增加。 在体内每日IPA给药或重复的C. spor。 定殖侵害了OVX诱导的骨质流失。 保护活细菌免受严峻的胃环境,并延迟口服孢子孢子的排空。 从肠道,一个C. spor。 - 封装的丝纤维蛋白(SF)水凝胶系统,在OVX小鼠中获得了与重复的细菌移植或每日给药相当的OVX小鼠的骨骼保护。 总体而言,我们发现肠道孢子 - 衍生的IPA通过调节PXR/p65复合物来参与雌激素缺乏诱导的破骨细胞过度活化。在这项研究中,我们发现孢子菌的丰度(C. spor。)及其衍生的代谢产物,吲哚丙酸(IPA)在卵巢切除(OVX)小鼠中降低。体外测定法表明IPA抑制了破骨细胞的分化和功能。在分子水平上,IPA抑制了核因子Kappa-配体(RANKL)诱导的妊娠X受体(PXR)泛素化和降解的受体激活剂,从而导致PXR与P65的持续结合增加。在体内每日IPA给药或重复的C. spor。 定殖侵害了OVX诱导的骨质流失。 保护活细菌免受严峻的胃环境,并延迟口服孢子孢子的排空。 从肠道,一个C. spor。 - 封装的丝纤维蛋白(SF)水凝胶系统,在OVX小鼠中获得了与重复的细菌移植或每日给药相当的OVX小鼠的骨骼保护。 总体而言,我们发现肠道孢子 - 衍生的IPA通过调节PXR/p65复合物来参与雌激素缺乏诱导的破骨细胞过度活化。在体内每日IPA给药或重复的C. spor。定殖侵害了OVX诱导的骨质流失。保护活细菌免受严峻的胃环境,并延迟口服孢子孢子的排空。从肠道,一个C. spor。- 封装的丝纤维蛋白(SF)水凝胶系统,在OVX小鼠中获得了与重复的细菌移植或每日给药相当的OVX小鼠的骨骼保护。总体而言,我们发现肠道孢子 - 衍生的IPA通过调节PXR/p65复合物来参与雌激素缺乏诱导的破骨细胞过度活化。C.孢子。包含的SF水凝胶系统是一种有前途的工具,可打击绝经后骨质疏松症,而无需重复的细菌移植。
