Andrii Shuliak 1 、Andrii Hedzyk 2 、Nina Tverezovska 3 、Lyubov Fenchak 4 、Natalia Lalak 5 、Anatolii Ratsul 6 、Oleksandr Kuchai 7 1 教育学博士,乌克兰帕夫洛·特奇纳乌曼国立师范大学信息学、信息和通信技术系教师 2 乌克兰德拉戈马诺夫国立师范大学研究生(博士) 3 教育学博士,教授,乌克兰国立生命与环境科学大学社会工作与康复系教授 4 教育学候选人,副教授,乌克兰穆卡切沃国立大学 5 教育学候选人,副教授,乌克兰穆卡切沃国立大学 6 教育学博士,教授,沃洛基米尔教育与特殊教育系主任维尼琴科乌克兰中央国立师范大学,乌克兰 7 教育学博士,副教授,乌克兰国立生命与环境科学大学教育学系教授,乌克兰
从 3D 显微镜图像重建数字神经元是研究大脑连接组学和神经元形态的重要技术。现有的重建框架使用基于卷积的分割网络在应用追踪算法之前将神经元从噪声背景中分割出来。追踪结果对原始图像质量和分割精度很敏感。在本文中,我们提出了一种新的 3D 神经元重建框架。我们的关键思想是利用点云的几何表示能力来更好地探索神经元的内在结构信息。我们提出的框架采用一个图卷积网络来预测神经骨架点,采用另一个图卷积网络来产生这些点的连通性。我们最终通过解释预测的点坐标、半径和连接来生成目标 SWC 文件。在 BigNeuron 项目的 Janelia-Fly 数据集上进行评估,我们表明我们的框架实现了具有竞争力的神经元重建性能。我们对点云的几何和拓扑学习可以进一步有益于 3D 医学图像分析,例如心脏表面重建。我们的代码可在 https://github.com/RunkaiZhao/PointNeuron 上找到。
Cloudera、Cloudera Altus、HUE、Impala、Cloudera Impala 和其他 Cloudera 标志是在美国和其他国家/地区注册或未注册的商标。所有其他商标均为其各自所有者的财产。免责声明:除非与 CLOUDERA 的书面协议中明确规定,否则 CLOUDERA 不会就 CLOUDERA 技术或与此相关的支持做出或给予任何明示或暗示的陈述、保证或承诺。 CLOUDERA 不保证 CLOUDERA 产品或软件将不间断运行,不保证其没有缺陷或错误,不保证其将保护您的数据免遭丢失、损坏或不可用,不保证其将满足客户的所有业务需求。在不限制前述条款的前提下,并在适用法律允许的最大范围内,CLOUDERA 明确否认任何及所有默示保证,包括但不限于对适销性、质量、非侵权、所有权和针对特定用途的适用性的默示保证以及任何基于交易过程或贸易惯例的陈述、保证或契约。
zdmhost.zdm: Audit ID: 185 Job ID: 1 User: zdmuser Client: zdmhost Job Type: "EVAL" Scheduled job command: "zdmcli migrate database -rsp /home/zdmuser/logical_offline_adb/logical_offline_adb.rsp - sourcenode onphost -sourcesid oradb -srcauth ZDMAUTH -SRCARG1用户:Onpuser -Srcarg2 Identity_file:/home/ZDMUSER/.ssh/ID_RSA -SRCARG3 sudo_location:/usr/usr/bin/bin/bin/sudo -eval“计划工作执行时间开始:等效的本地时间:2024-10-18 11:00:52当前状态:成功结果文件路径:“/home/zdmuser/zdm/zdm/zdmbase/chkbase/chkbase/scheduled/scheduled/job-1-1-2024-10-10-18-18-11:01:01:21.log”计量路径: "/home/zdmuser/zdm/zdmbase/chkbase/scheduled/job-1-2024-10-18-11:01:21.json" Excluded objects file path: "/home/zdmuser/zdm/zdmbase/chkbase/scheduled/job-1-filtered-objects-2024-10-18T11: 05:34.879。
本演示文稿和随附的口头评论包含联邦证券法所定义的明示和暗示的“前瞻性”陈述,这些陈述涉及重大风险、假设和不确定性。除历史事实陈述之外的所有陈述均可视为前瞻性陈述,包括但不限于我们产品的当前和计划开发和功能、我们有效销售现有和新产品的能力、对未来经营业绩或财务业绩的预期、业务战略和计划、不利的宏观经济条件(如通货膨胀、利率变动、实际或潜在的银行倒闭和经济衰退担忧)、俄罗斯-乌克兰冲突和其他地缘政治紧张地区的影响,以及由此对我们的业务、客户、供应商和合作伙伴的影响以及对全球和区域经济、金融市场和经济活动的影响、市场波动、规模和增长机会、某些关键财务和运营指标的计算、资本支出、未来运营计划、竞争地位、技术能力和战略关系,以及与前述内容相关的假设。前瞻性陈述本质上受风险和不确定性的影响,其中一些无法预测或量化。在某些情况下,您可以通过“可能”、“将”、“应该”、“可以”、“预期”、“计划”、“预期”、“相信”、“估计”、“预测”、“打算”、“潜在”、“将”、“继续”、“持续”等术语或这些术语的否定词或其他类似术语来识别前瞻性陈述。您不应过分依赖任何前瞻性陈述。前瞻性陈述不应被理解为对未来业绩或结果的保证,也不一定准确表明此类业绩或结果将在何时实现(如果有的话)。
服务组合适用于 HPC、AI 和 ML 以及云计算应用程序,免费提供(https://fenix-ri.eu/access)。应用程序评估遵循 PRACE(https://prace-ri.eu/)制定的同行评审原则。Fenix 的目标是服务于从多样化电子基础设施服务中受益匪浅的科学和工程领域,以促进其协作研究和数据共享。因此,它利用国家、欧洲和国际资助计划来实现维持电子基础设施服务的计算、存储和网络资源。也有类似的国家计划,例如美国 NSF XSEDE(https://www.xsede.org/)。然而,Fenix 引入了独特的方面:首先,它为领导级超级计算资源提供商定义了一个超越国界的联合研究电子基础设施架构;其次,它提供了统一的联合身份和访问管理解决方案。
