摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
基于锚点的大规模多视图聚类因其在处理海量数据集方面的有效性而引起了广泛关注。然而,当前的方法主要通过探索锚点图或投影矩阵之间的全局相关性来寻找用于聚类的共识嵌入特征。在本文中,我们提出了一种简单而有效的可扩展多视图张量聚类(S 2 MVTC)方法,我们的重点是学习视图内和跨视图的嵌入特征的相关性。具体而言,我们首先通过将不同视图的嵌入特征堆叠到张量中并旋转它来构造嵌入特征张量。此外,我们构建了一种新颖的张量低频近似(TLFA)算子,它将图相似性结合到嵌入特征学习中,有效地实现不同视图内嵌入特征的平滑表示。此外,对嵌入特征应用共识约束以确保视图间语义一致性。在六个大规模多视图数据集上的实验结果表明,S 2 MVTC 在聚类性能和 CPU 执行时间方面明显优于最先进的算法,尤其是在处理海量数据时。S 2 MVTC 的代码已公开发布在 https://github.com/longzhen520/S2MVTC。
咨询委员会(向机构)Abbvie,Biontech SE,Bristolmyersqibb,Chugai Pharmaceutical,Curevac AG,Daiichi Sankyo,F.Hoffmann-La Roche La Roche Ltd,Pharmamar,Pharmamar,Pharmamar,Pharmamar,Pharmamar,regeneron Ltd, F.Hoffmann-La Roche Ltd, Genmab, Immunocore, Janssen, MSD, Ose Immunotherapeutics, Owkin, Taiho oncology Steering committee (to institution) Astrazeneca, Beigene, GENMAB A/S, GlaxoSmithKline, Janssen, Ose Immunotherapeutics, Pharmamar, Roche-Genentech, Sanofi, Takeda发言人(机构)Abbvie Astrazeneca,Chugai Pharmaceutical,Daichii Sankyo,Hedera DX,Janssen,MSD,MSD,Roche,Roche,Sanofi Aventis Springer Healthcare Healthcare Ltdd
图像包含大量冗余信息,使其具有挑战性地在大规模上从它们中有效地了解它们。最近的工作通过在视觉语言构想学习期间掩盖图像贴片来解决这个问题[15,33,36,70]。一种简单的方法是随机放下大部分斑块,通过降低每个训练迭代中的计算成本和记忆使用量,从而更有效地培训训练[36]。替代策略是掩盖语义相关的贴片[15,33,70],例如属于同一对象的贴片。这迫使学习的模型预测从上下文中描述缺少场景结构的单词,从而改善了学识渊博的表示。但是,这种方法需要一种单独的机制来将语义重新贴定的补丁分组在一起,这为学习过程增加了相当大的复杂性,并且计算上很昂贵。我们提出了一种简单的掩盖策略,用于避免这些缺点的多模式对比学习。在训练期间,我们掩盖了斑块的随机簇(图1)。对于此聚类,我们将Patches的原始RGB值用作特征表示。我们的方法利用了一个事实,即视觉相似性的简单度量通常可以限制相干的视觉结构,例如对象部分[18,53],
聚类是算法中的一个重要主题,在机器学习、计算机视觉、统计学和其他几个研究学科中有着广泛的应用。图聚类的传统目标是找到具有低电导性的聚类。这些目标不仅适用于无向图,而且无法考虑聚类之间的关系,而这对于许多应用来说可能是至关重要的。为了克服这些缺点,我们研究了有向图(有向图),其聚类彼此之间展示了更多的“结构”信息。基于有向图的 Hermitian 矩阵表示,我们提出了一种近线性时间的有向图聚类算法,并进一步表明我们提出的算法可以在合理的假设下以亚线性时间实现。我们的理论工作的意义通过对联合国商品贸易统计数据集的大量实验结果得到证明:我们算法的输出聚类不仅展示了聚类(国家集合)在进出口记录方面如何相互关联,还展示了这些聚类如何随着时间的推移而演变,这与已知的国际贸易事实一致。
1860 年尖头半身像模具研究,作者 Richard Snow 归因指南,第 2 卷:1859-1869 年,2002 年。这项研究始于 1990 年,当时我是第三版,为了节省空间,它被省略了。这是我写的第一本关于印度分币的书。目标不是更新版本和对这些硬币的最新研究,以识别模具对以帮助收藏家找到它们。反向模具名称包括用于但试图找出制造了多少的反向。1860 年宽胸像模具品种,因此唐纳德·库里在序列后期添加到数据中会有空白。1990 年代。综合研究发表在《飞鹰和印度分币》第二版中
1。一种自我监督的模型登录方法,仅取决于正面匹配对以改善面部嵌入。2。面部聚类的基于深度学习的相似性度量,该指标会自动适应给定模型的学习嵌入空间。3。不需要任何用户输入参数的全自动视频面聚类算法。4。发布电影脸聚类基准数据集,称为MoviefaceCluster,该数据集提供了电影域中存在的极端挑战的面部聚类场景。
近年来,基于锚点的方法在多视图聚类中取得了可喜的进展。这些方法的性能受到锚点质量的显著影响。然而,以前的研究生成的锚点仅仅依赖于单视图信息,忽略了不同视图之间的相关性。特别地,我们观察到相似的模式更有可能存在于相似的视图之间,因此可以利用这种相关性信息来提高锚点的质量,而这同样被忽略了。为此,我们提出了一种新颖的即插即用的通过视图相关性进行多视图聚类的锚点增强策略。具体而言,我们基于对齐的初始锚点图构建视图图来探索视图间相关性。通过从视图相关性中学习,我们使用相邻视图上锚点和样本之间的关系来增强当前视图的锚点,从而缩小相似视图上锚点的空间分布。在七个数据集上的实验结果证明了我们的方法优于其他现有方法。此外,大量的对比实验验证了所提出的锚增强模块应用于各种基于锚的方法时的有效性。