钙钛矿太阳能电池设备中正确选择的光管理策略在实现高功率转换效率方面是必不可少的。应考虑降低反射损失,前表面的质地化,类似于已建立的太阳能电池技术中使用的反射损失。在本文中,使用滚筒纳米膜技术应用于平面钙钛矿太阳能电池,以最大程度地减少反射损失。The results show that the applied honeycomb pattern reduces the solar-weighted reflectance from 13.6% to 2.7%, which enhances the current density of the unmodified cell by 2.1 mA cm − 2 , outperforming the commonly used planar MgF 2 antireflective coating by 0.5 mA cm − 2 .实验结果与光学建模结合在一起,以发现优化的结构,并预测太阳模块中的光学行为。这项工作中使用的过程可以转移到Perovskite-Silicon串联太阳能电池,为未来设备的反射减少提供了有希望的途径。
•自2019年7月以来的PFA非检测 - 排气过滤研究完成 /较高的效率排气过滤器和展位修改也完成(2019年12月) - 完成(2020年3月)(2020年3月) - 水连接(38) /诗人系统的安装(11)安装(11)在私人井中和私人井(7月2020年7月 - 2020年7月 - 2020年7月)在49套住房中完成的(11) - 2020年7月 - 2020年7月 - 2020年7月 - Stonk Work Work,Stonk Work Work -2020年7月(Stonk 3) 2023)•IV阶段补救实施(2023-2024)
DRP配置功能现在已进一步扩展,以支持共同散布和共反应性溅射。drp 2.5使用磁控管输出配置,但具有两个或更多不同的目标材料,形成单个薄膜材料,其中包含两个或多个组成元素。没有其他磁控管输出配置(例如此)可用于共同启动或共反应溅射。这种构型产生了几个重要的好处,包括:1)较低的底物加热,这对于热敏感的底物(即塑料,包括聚对苯二甲酸酯[PET],最常见的热塑性塑料等非常重要); 2)比标准双极,双磁孔溅射(DMS)明显高的沉积速率; 3)较低的弧产生导致较低的颗粒产生。对于诸如PET之类的材料的网络涂料,较低的底物加热至关重要。
近年来,将羟基磷灰石(HA)应用于植入物生物稳定的金属底物上的涂层,植入物周围的骨骼生长的刺激以及恢复时间的优化吸引了世界上许多研究人员的注意。在这方面,当前的研究对HA及其用于组织工程应用的复合涂料进行了综述。ha是近年来由于其体外生物活性,骨诱导和骨化性能而成为研究的生物陶瓷之一。根据先前的报告,成功进行了涂层植入物,以实现高腐蚀性,骨骼生长和再生以及腐蚀电流密度的降低。当前的研究对先前的研究作品进行了综述,涉及HA及其复合涂层在底物上的涂层机理,物理机械,体外生物活性和生物相容性特性。获得的结果表明,HA及其复合材料在改善耐腐蚀性,提供生物相容性,直接与组织,加速治疗以及降低对卫生保健部门施加的成本方面对金属底物具有协同作用。
摘要:过渡金属二硫化物 (TMD) 的环境降解是一系列应用中的一个关键绊脚石。我们展示了一种简单的一锅非共价芘涂层工艺,可保护 TMD 免受光诱导氧化和环境老化。芘以非共价方式固定在剥离的 MoS 2 和 WS 2 的基面上。通过电子吸收和荧光发射光谱评估 TMD / 芘的光学特性。高分辨率扫描透射电子显微镜结合电子能量损失光谱证实了广泛的芘表面覆盖,密度泛函理论计算表明 TMD 表面上有约 2-3 层的强结合稳定平行堆叠芘覆盖。在环境条件下以 0.9 mW / 4 µ m 2 照射时,对剥离的 TMD 进行拉曼光谱分析,结果显示由于 Mo 和 W 的氧化状态而产生新的强拉曼谱带。但值得注意的是,在相同的暴露条件下,TMD / 芘保持不受影响。目前的发现表明,在 MoS 2 和 WS 2 上物理吸附的芘可充当环境屏障,防止 TMD 中由水分、空气和激光照射催化的氧化表面反应。拉曼光谱证实,在环境条件下储存两年的混合材料在结构上保持不变,证实了芘不仅可以阻止氧化,还可以抑制老化,具有有益作用。
“干涂层”的技术方法允许消除能源密集型干燥步骤,以节省大量能源和成本。“ F. Degen和O.Krätzig,“电池生产的未来:新型生产技术作为工程决策指南的广泛基准”,《工程管理交易》,doi:10.1109/tem.2022.3144882。
尺寸反射率直接方法的测量缺乏足够的灵敏度来测量激光方面的超低反射率。但是,在过去的二十年中已经开发了各种指导方法[5] [6] [7]。在这项工作中,采用了马里兰州大学[8]开发的自发发射转换(SET)方法。此方法通过将ASE光谱转换为信号组件与大多数噪声正交的傅立叶域,从而提供了高信号与噪声比(SNR)。图5显示了SET方法与TFCALC建模结果之间的比较。实验和理论在光谱的长波长部分中非常吻合。在较短的波长处延伸的差异被认为主要是由于ASE信号低,因此该区域的SNR差。
这家德国初创公司是一家为航天、国防、能源和相关行业提供先进金属增材制造服务的供应商。公司专注于加工铌合金 (C103)、镍合金 (In718)、钛合金 (Ti64、Ti CP1)、铝合金 (A6061、AlSi10Mg)、难熔金属 (钽、钨) 和不锈钢 (SS316L)。该公司在创新合金工艺开发方面拥有丰富的专业知识,并担任多种应用的开发合作伙伴和产品设计师。
比蒂吉姆 - 比辛肯根,2025年2月5日 - 从电动汽车到耳机:锂离子电池的需求在全球范围内增加。但是,为此所需的电极的产生是能量密集型的,涉及使用有毒溶剂。因此,Dürr正在用电池电池制造商Cellforce和美国LICAP打破新的地面。一起,这三个合作伙伴正在计划创新的试点厂,用于在基尔钦特林(Kirchentellinsfurt)(德国)的Cellforce的电极箔的干涂层。与传统的湿涂层相比,这项面向未来的技术在成本,能源消耗和CO 2排放方面具有显着优势。此外,这消除了对溶剂的需求。在产生电极时,将薄金属箔涂有由化学物质组成的阴极和阳极材料。今天,通常是使用湿材料和溶剂完成的。相比之下,在斯图加特附近的Kirchentellinsfurt建造的植物将与干材料一起使用。这将通过消除对干燥烤箱的需求,最多可节省40%的能源。同时,生产时间将减少约20%,而CO 2排放将减少约1吨每10千瓦时产生的电极容量。DürrAg首席执行官Jochen Weyrauch博士:“干涂层有可能使电池生产更加高效和可持续。我们期待继续与Durr和与Cellforce和Licap一起,我们将自己视为新技术及其在工业规模上使用的推动者。” Cellforce的CTOMarkusGräf博士和Heino Sommer博士:“我们看到LICAP激活的Dryode®技术在降低高性能细胞的内部电阻方面取得了显着的进展,最大程度地减少了空间需求并显着降低了CO 2排放和制造成本。
摘要:功率转换效率(PCE)是评估太阳能电池的输出特性的主要参数。抗反射涂层(ARC)起着抑制太阳能电池表面的光损失的作用,从而增强了PCE。本文研究了晶体硅(C-SI)太阳能电池上双层抗反射涂层(DLARC)的不同材料。使用PV Lighthouse软件的晶圆射线示踪剂完成模拟硅太阳能电池的总体过程方法。检查了具有不同类型的双层的五个光捕获(LT)方案。c-Si的最大电势光电密度(J MAX)用ARC显示出比参考c-Si(无弧)的J max的改善。lt方案II:SIO 2 /TIO 2产生J Max的最大值,其中该值为42.20 mA /cm 2。这表明方案II具有最高的J MAX增强功能,值为10.01%。这一发现意味着DLARC适用于减少光损失,因此有效地提高了太阳能电池的性能。关键字:光伏,太阳能电池,抗反射涂层,光捕获,射线跟踪1。简介