摘要 目的 除矢状线对齐外,还强调了横平面参数 (TPP) 和旋转半脱位对患者报告结果的影响。退行性脊柱侧弯成因的假设之一是椎间盘退化,伴有轴向椎体 (AVR) 和椎间旋转 (AIR) 增加。因此,脊柱侧弯早期的 TPP 分析似乎特别令人感兴趣。本研究旨在评估成人脊柱畸形 (ASD) 患者三维 (3D) 重建的可靠性。方法 30 名 ASD 患者接受双平面 X 线检查,并分为两组(Cobb 角 [ 30 � 或 \ 30 � )。测量脊柱参数和 TPP(顶端 AVR、主曲线上部和下部的 AIR)。四位操作员进行了两次 3D 重建。使用 ISO 标准 5725-2 分析观察者内和观察者之间的可靠性,以量化可重复性的全局标准偏差 ( S R )。结果平均 Cobb 角为 31 �,平均年龄 55 岁(70% 为女性)。顶端 AVR、上部和下部 AIR 的平均值分别为 16 � ± 15 �、6 � ± 6 � 和 5 � ± 5 �。脊柱骨盆参数 S R 低于 4.5 �。对于 Cobb 角 \ 30 � ,AVR 顶点、扭转指数、上部和下部的 S R 分别为 7.8 �、9.6 �、4.5 � 和 4.9 �
平等机会机构 根据学生目录,查塔胡奇技术学院不会因种族、肤色、信仰、国籍或族裔、性别、宗教、残疾、年龄、政治派别或信仰、基因信息、退伍军人身份或公民身份而歧视学生(法律允许或规定的特殊情况除外)。以下人员已被指定处理有关非歧视政策的问询:查塔胡奇技术学院 Title IX 协调员 Shanequa D. Warrington,980 South Cobb Drive, Building C 1102B, Marietta, GA 30060,770-975-4023 或 sdwarrington@chattahoocheetech.edu; Chattahoochee 技术学院 504 区协调员,Caitlin Barton,5198 Ross Road, Building A1320, Acworth, GA 30102,电话:770-975-4099,或发送电子邮件至 Caitlin.Barton@ChattahoocheeTech.edu;Chattahoochee 技术学院 508 区/ADA 协调员 Stephanie Meyer,980 South Cobb Drive, Building A 2114, Marietta, GA 30060,电话:770-528-3761,或发送电子邮件至 Stephanie.Meyer@Chattahoocheetech.edu。
目的:编码低COMT和MTHFR活性的遗传变异与特发性脊柱侧弯有关。COMT和MTHFR对青少年特发性脊柱侧弯(AIS)进展的综合影响尚不清楚。这项研究调查了COMT和MTHFR低活性变体是否与AIS进程相关。方法:AIS的患者,至少两次COBB角度测量在青春期,以及低COMT(RS4680 AA)和低MTHFR(A1298C AC和C677T CT; A1298C AA和C677T TT)的患者(A1298C AC和C677T)活性(1组)或GG(组1) (A1298C AA和C677T CT; A1298C AC和C677T CC; A1298C AA和C677T CC)活动(第2组)。排除了神经肌肉或综合脊柱侧弯的人。主要结果是脊柱侧弯的进展,被定义为诊断和骨骼成熟时间之间至少20度或脊柱手术的COBB角增加。通过卡方检验分析了主要结果。结果:具有AIS诊断和所需COBB角度测量的72名患者的COMT和MTHFR结果符合第1组(n = 41)或第2组(n = 31)的标准。关于主要结果,第1组中的78.0%(32/41)进展,第2组患者的48.4%(15/31)(p = 0.009)。结论:与COMT和MTHFR的中间或正常活性变异的患者相比,低COMT和低MTHFR活性变异的患者具有AIS的进展。进一步了解COMT和MTHFR的作用可能会为有关治疗方式的研究提供信息。
在 1998 年 9-10 月版的《装甲兵种》杂志中,查尔斯·安德森中校和杰弗里·科布少校认为,传统的指挥维护没有充分利用可用的时间和人员来确保部队装备随时准备作战。准备执行战时任务的部队会格外小心地对待他们的装备,因为他们手头有明确而紧迫的任务,而驻军环境中的士兵和领导者往往会找各种借口离开车队(如果他们出现的话),去参加会议、医疗预约、培训等。这种情况的明显结果是预防性维护检查减少、设备维修时间延长以及整体部队执行任务的能力下降。安德森中校和科布少校假设,一个定义更好的维护事件,并有全部队参与,可以更有效地获得下属的支持,并提高整个组织的整体战备水平。进入集结区作业 (AAO)。(见图 1)
Arbelaez,J。D.,Dwiyanti,M。S.,Tandayu,E.,Llantada,K.,Jarana,A.1K-RICA(1K-RICE自定义扩增子)一种基于大米中遗传学和育种应用的新型基因分型SNP分析。米,12,1 - 15。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。 特质渗入项目的系统设计。 理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。 DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。Cameron,J。N.,Han,Y.,Wang,L。,&Beavis,W。D.(2017)。特质渗入项目的系统设计。理论和应用遗传学,130,1993 - 2004。https://doi.org/10.1007/S00122-017-2938-9 Chen,G.K.,G.K.,Marjoram,P。,&Wall,J。D.(2009)。DNA序列数据的快速而灵活的模拟。 基因组研究,19,136 - 142。https:// doi。 org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。 回到未来:将MAS作为现代植物繁殖的工具。 理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。 提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。 理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A. 重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。DNA序列数据的快速而灵活的模拟。基因组研究,19,136 - 142。https:// doi。org/10.1101/gr.083634.108 Cobb,J.N.,Biswas,P.S。,&Platten,J.D。(2019)。回到未来:将MAS作为现代植物繁殖的工具。理论和应用遗传学,132,647 - 667。https://doi.org/10.1007/s00122-018-3266-3266-4 Cobb,J.N.,J.N.,Juma,Juma,R.U. M.和Ng,E。H.(2019)。提高公共部门植物育种计划中的遗传增益率:育种者方程式的经验教训。理论和应用遗传学,132,627 - 645。https://doi.org/10.1007/s00122-019-019-019-03317-0 Collard,B.C. Y. Raghavan,C.,Gregorio,G。B.,Vial,L.,Demont,M.,Biswas,P.S.,Iftekharuddaula,K.M.,Rahman,M.A.重新审视水稻育种方法 - 评估快速生成前进(RGA)的常规水稻育种。植物生产科学,20,337 - 352。https://doi.org/10。1080/1343943X.2017.1391705 Collard,B.C. Y.,Gregorio,G。B.,G。B.,Thomson,M。J.,M。J.,R.转移水稻育种:在国际水稻研究所(IRRI)上重新设计灌溉育种管道。作物育种,遗传学和基因组学,1,E190008。https://doi.org/10.20900/cbgg20190008 Dar,M.H.,Zaidi,N。W.,Waza,S.A.,Verulkar,S.B.,S.B.,Ahmed,T.,Singh,P.K. K.,Kathiresan,R.M.,Singh,B.N.,Singh,U.S。,&Ismail,A.M。(2018)。在有利条件下没有收益罚款,为成功采用洪水大米铺平了道路。科学报告,8,9245。B.(2011)。ridge回归和其他用于基因组选择的内核,r tagkage rrblup。植物基因组,4,250 - 255。https://doi.org/10.3835/plantgenome2011.08.0024
lwda 01-西北Ga Lwda 08-三河LWDA 14-下查塔霍奇奇LWDA 02-乔治亚山脉LWDA 09-东北ga lwda 15-中间弗林特lwda lwda 03-亚特兰大11-中心11-萨凡纳河地区
CD 是 是 是 是 是 是 是 NCD 否 +/- +/- +/- +/- +/- WR 否 +/- +/- +/- +/- +/- +/- WNR 否 +/- +/- +/- +/- +/- +/- LBFS N/A 否 否 否 否 否 否 否 例外 无 LIMDU/PEB 如果已经举行了 LIMDU/PEB,则在董事会召开时应提交 Grounding PE 和 AMS。此委员会的结果必须包含在豁免包中。成员没有资格获得豁免,直到董事会将其送回全职值班。关键是 是:1) 胸椎或腰椎侧弯超过 20 度;2) 胸椎后凸超过 40 度; 3) 腰椎前凸 > 50 度(申请人)和 > 55 度(指定人员) (所有测量均以 Cobb 角表示) +/- 取决于是否满足所列要求,可能会或可能不会建议豁免(“逐案”处理)航空医学问题:过度的脊柱后凸、脊柱侧凸、脊柱前凸或它们的组合可能会使椎间盘在弹射过程中承受过度的 Gz+ 负荷。在 Griffin 的经典评论中,发现弹射座椅操作期间脊柱骨折的发生率与弹射时的姿势有关。当飞行员轻微屈曲以启动摇杆激活机制时,脊柱骨折发生的频率更高,但当他们使用允许诱导脊柱伸展的面部窗帘系统时,脊柱骨折发生的频率较低 [1]。因此,可以合理地假设,预先存在的脊柱畸形同样会使飞行员面临更大的风险。症状可能导致长时间在狭窄的驾驶舱内受到限制以及受到振动或过大 G 力时出现背痛。超过 30 度的异常脊柱弯曲会造成弹射伤害的风险。上半身的重心位于脊柱前方。每当沿脊柱轴施加负荷时,例如在弹射时,就会产生弯曲运动,这会增加压缩性骨折的可能性。虽然指定机组人员可以豁免,但考虑为申请人豁免意义不大,因为初始训练将涉及弹射座椅飞机。脊柱侧弯不超过 30 度的长期结果非常有利,但超过 30 度的长期结果不确定。请注意,Cobb 方法测量结果存在 3-5 度的误差。豁免:如果胸椎或腰椎侧弯(Cobb 方法测量结果)超过 20 度,则申请人将失去资格,且不予豁免,但根据指定人员的具体情况,最多可豁免 30 度。胸椎后凸超过 40 度属于 CD,但可以
航空医学问题:过度的脊柱后凸、脊柱侧凸、脊柱前凸或它们的组合可能会使椎间盘在弹射过程中承受过度的 Gz+ 负荷。Griffin 在一篇经典综述中发现,弹射座椅操作过程中脊柱骨折的发生率与弹射时的姿势有关。研究发现,当飞行员略微屈曲以启动摇摄手柄激活机制时,脊柱骨折发生率更高,而当他们使用允许诱导脊柱伸展的面部窗帘系统时,脊柱骨折发生率较低 [1]。因此,可以合理地假设,先前存在的脊柱畸形同样会使飞行员面临更大的风险。在狭窄的驾驶舱中长时间受限以及受到振动或过度 G 力时,有症状的情况可能会导致背痛。超过 30 度的异常脊柱弯曲会造成弹射损伤的风险。上半身的重心位于脊柱前方。每当沿脊柱轴施加负荷时(如弹射时),就会产生弯曲运动,这会增加压缩性骨折的可能性。虽然指定机组人员可以豁免,但考虑为申请人豁免几乎没有意义,因为初始训练将涉及弹射座椅飞机。脊柱侧弯在 30 度以下的情况下,长期结果非常有利,但 30 度以上则不确定。请注意,测量结果存在 3-5 度的误差