我们的 LMS 专注于基于项目的学习,可实现知识的实际应用,树立新的教育标杆。它为教师提供强大的支持,具有直观的界面和出色的计算机科学课程所需的基本资源。Cyber Square 不仅仅是一个平台;它是一项面向未来的学习生态系统的投资,可帮助学生和教育工作者在数字时代脱颖而出。
一、概述 计算机科学是 RMS 提供的 3 门循环课程中的第一门。解决我们作为一个社会所面临的关键挑战所需的新方法将需要利用技术和计算的力量。快速变化的技术和数字信息的激增已经渗透并彻底改变了学习、工作和日常生活。要成为计算密集型世界中受过良好教育、具有全球意识的人,学生必须清楚地了解计算机科学的概念和实践。随着教育系统适应学生不仅是计算机用户而且是精通计算机科学和设计思维概念和实践的计算素养创造者的愿景,通过学习计算机科学和技术让学生参与计算思维和以人为本的设计方法有助于让学生为合乎道德地生产和批判性地消费技术做好准备。(新泽西州教育部)
近年来,生成式人工智能 (AI) 引起了媒体和社会的广泛关注。这些是根据输入创建文本、图像或视频等内容的 AI 模型。受文本生成领域巨大进步的推动,最近开发了大量基于大型语言模型 (LLM) 的 AI 编码助手,用于源代码生成的(部分)自动化。这些模型根据方法的不同,要么在大量文本上进行训练,然后使用源代码进行微调,要么直接在大量源代码上进行训练。在应用中,这些模型的使用方式类似于聊天机器人。用户给模型一个提示,可以是所需功能的描述,也可以是(带注释的)源代码框架。输出是用户选择的编程语言中具有所需功能的源代码。当前一代模型除了生成最佳建议外,还会生成多个替代方案 - 这是模型认为最有可能正确的建议。用户可以选择其中一个建议并将其采纳到他们当前的软件项目中。这些 AI 编码助手通常通过集成开发环境 (IDE) 的插件访问。此外,开发人员还会使用托管在云端或本地的通用聊天机器人进行编程。
摘要 20 世纪中叶,两门新的科学学科强势崛起:分子生物学和信息通信理论。起初,两者的相互影响十分深刻,以至于遗传密码这一术语被普遍接受用来描述 mRNA 三联体(密码子)作为氨基酸的含义。然而,如今,这种协同作用并未充分利用这两门学科的飞速发展,而是带来了更多的挑战而不是答案。这些挑战不仅具有重大的理论意义,而且代表了下一代生物学不可避免的里程碑:从个性化基因治疗和诊断到人工生命,再到生物活性蛋白质的生产。此外,这一问题与理论生物学所需的范式转变密切相关,这种转变早已开创,需要生物学领域以外的学科共同做出贡献。信息作为概念隐喻的使用需要转化为定量和预测模型,这些模型可以通过经验检验并以统一的视角进行整合。要成功完成这些任务,需要采取广泛的多学科方法,包括人工生命研究人员来解决这一问题。
我们描述了一种分析复杂微生物种群遗传多样性的新型分子方法。该技术基于通过变性梯度凝胶电泳 (DGGE) 分离编码 16S rRNA 的聚合酶链式反应扩增基因片段,这些片段的长度相同。对不同微生物群落的 DGGE 分析表明,分离模式中存在多达 10 个可区分的条带,这些条带很可能来自构成这些种群的许多不同物种,从而生成了种群的 DGGE 图谱。我们表明,可以识别仅占总种群 1% 的成分。使用针对硫酸盐还原菌 16S rRNA 的 V3 区特异性的寡核苷酸探针,可以通过杂交分析识别某些微生物种群的特定 DNA 片段。对在有氧条件下生长的细菌生物膜的基因组 DNA 进行分析表明,尽管硫酸盐还原菌具有厌氧性,但它们仍存在于这种环境中。我们获得的结果表明,该技术将有助于我们了解未知微生物种群的遗传多样性。
摘要 - 尽管未来电网的数字化提供了几种协调激励措施,信息和通信技术(ICT)的可靠性和安全性却阻碍了其整体绩效。在本文中,我们通过统一的功率和信息来介绍一种新颖的插座尖峰谈话,作为使用SPIKES协调对微电网控制的数据归一化的手段。这种网格边缘技术允许每个分布式能源资源(DER)通过使用沿着领带线的功率流相互交互来独立执行二级控制理念。受到计算神经科学领域的启发,Spike Talk基本上基于我们大脑中的信息传递理论的细粒平行性,尤其是当神经元(建模为DERS)通过突触(模型为Tie Line)传输信息(从每个DER上测量的功率流)发射信息(从每个DER测量)。Spike Talk不仅可以简化并通过驳回ICT层来解决网络物理建筑操作的当前瓶颈,而且还提供了基础设施,计算和建模的内在运营和成本效益的机会。因此,本文提供了关键概念和设计理论的教学插图。由于我们专注于本文中的微电网的协调控制,因此研究了一些负责将相关局部测量值转换为尖峰的神经编码方案的信号准确性和系统性能。
内容本课程介绍了算法解决问题。其主要目标是学习如何通过使用最合适,最有效的数据结构来建模由管理工程引起的实际问题,以及如何通过使用经典算法和图形理论来实现最有效的解决方案方法。该课程强调了数字化以及算法与编程之间的关系的重要性,以及通过开发旨在解决每年分配的特定问题的最终编码项目,与项目管理和解决问题的技能相关的方面。该问题可能由管理工程或计算机科学的任何领域引起;它可能享受任何路由,分区,着色,位置,电信,可持续物流和供应链管理,投资组合,调度,数据挖掘或业务分析功能,并且可能具有任何一般结构。学生将必须小组工作以最有效的方式解决和解决问题,并准备在考试期间捍卫自己的工作。课程特别包括以下主题:
NCCI PTP编辑可以防止不适当地支付服务,这通常不应一起报告。每个编辑都有第一列和第二列医疗保健通用过程编码系统/当前程序术语(HCPCS/CPT)代码。如果提供商在同一服务日报告了同一受益人的编辑对的2个代码,则第一个代码有资格付款,但是除非允许并报告临床适当的NCCI PTP相关修饰符,否则第二列第二代码被拒绝。MUS可在一天中支付同一服务的不适当数量/数量。HCPC/CPT代码的MUE是在同一服务日期,同一提供商在同一提供者中,在同一提供者的同一提供者的同一提供者中,在同一提供者中,报告了HCPCS/CPT代码的最大服务单位数(UOS)。有关NCCI PTP编辑和MUE的其他一般信息。在NCCI PTP编辑或HCPCS/CPT代码的MUE值中存在HCPCS/CPT代码,并不一定表明该代码涵盖了任何或所有州Medicaid程序。
我们解决了为经典广播渠道编码的问题,该问题需要通过在广播频道上发送固定数量的消息来最大化成功概率。对于[1] a(1- e-e-1)在多项式时间内运行的[1] A(1- e-e-1)中发现的Barman和Fawzi的,Barman和Fawzi 表明,实现严格的更好近似值率是NP-HARD。 此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。 自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。 在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。 对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。 最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。,Barman和Fawzi 表明,实现严格的更好近似值率是NP-HARD。 此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。 自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。 在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。 对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。 最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。表明,实现严格的更好近似值率是NP-HARD。此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。
摘要:神经退行性疾病(NDDS),包括阿尔茨海默氏病(AD),帕金森氏病(PD)和肌萎缩性侧面硬化症(ALS),逐渐成为社会的负担。与这些NDD相关的不利影响和死亡率/发病率是许多医疗保健问题的原因。NDD的病理改变与线粒体功能障碍,氧化应激和炎症有关,这进一步刺激了NDD的进展。最近,长期的非编码RNA(LNCRNA)吸引了NDD病理学的关键介体的广泛关注。但是,了解生物学功能,分子机制和LNCRNA在NDDS中的潜在重要性存在很大的差距。本评论记录了有关LNCRNA的当前研究及其对NDD的影响。我们进一步总结了LNCRNA对NDD患者的新型治疗靶标和生物标志物的潜在影响。