摘要 - 该项目解决了高速公路上驾驶员隐身性的关键问题,这通常会导致碰撞,尤其是当较小的车辆接近大型车辆(例如公交车或卡车)时。高速公路上的驾驶员隐身通常会导致事故,尤其是当较小的车辆接近较大车辆(如公共汽车或卡车)时。该项目使用图像处理和基于LIFI技术的实时车辆检测和通信系统。在重车上,有一个相机和一个Li-Fi发射器,而接近的车辆具有Li-Fi接收器。如果较小的车辆太近,则系统会发出仪表板警告的警告。该系统致力于减少与盲点和较晚反应有关的事故。具有基于Python的图像处理,在每种类型的天气和照明条件下都会发生准确的检测。NodeMCU微控制器控制图像处理单元和LI-FI发射器的数据流。实时数据通过LI-FI传输到传入的车辆,允许驾驶员更快地响应。该系统的延迟非常小于100毫秒,因此减少了后端碰撞,尤其是在可见度较差的情况下。这种具有成本效益和可扩展的解决方案适用于商用和乘用车,并突出了Li-Fi技术在改善汽车安全性方面的潜力,尤其是在基础设施有限的地区。
mikeg.net › 航空电子设备 › 合并 PDF 2001 年 10 月 22 日 — 2001 年 10 月 22 日 “ATP”是 Aircraft Technical Publishers 的注册商标... 3 部分数字显示,可连续读出 ... 可靠性和性能
v3 具有全面的测试程序:台式和测试光束、辐照、NASA 有效载荷任务(A-STEP)的四芯片读数、与 ePIC 的 Pb/SciFi 集成(研发研究和测试文章生产)
驾驶时急性健康变化是车辆碰撞的主要原因之一。每年在全球范围内,大约119万人死亡,在汽车碰撞(MVC)中受伤20到5000万人[1]。道路交通损伤给整个个人,家人和国家造成了巨大的经济损失;在大多数国家 /地区,成本约为国内生产总值的3%[1]。因此,世界卫生组织已建议所有政府以整体方式解决道路安全[1]。在日本,政府设定了一个安全交通社会的目标,那里没有发生碰撞,并发布了一次交通安全计划,该计划每五年修改一次。第11次交通安全基本计划始于2021年,直到2025年运行,包括具体的行为目标:2,000或更少和严重伤害22,000或以下的死亡人数。分析MVC的趋势和特征应使有效的可预防措施得以制定[2]。
2025年3月4日,参议院拨款委员会副主席苏珊·苏珊·柯林斯(Susan Collins)参议院拨款委员会副主席413迪克森参议院办公室大楼154罗素参议院办公楼华盛顿特区20510华盛顿特区20510年华盛顿特区20510年荣誉委员会托姆·科尔(Tom Cole) 2413 Rayburn House办公室大楼华盛顿特区20510华盛顿特区20510年亲爱的主席Collins,Murray副主席Murray,Cole主席和排名成员Delauro,代表签名的组织,我们要求您确保NIH在剩余的2025财年和FY 2026年的剩余时间内为NIH提供强大的拨款。我们进一步敦促国会重申当前针对设施和行政的法定安排(F&A或“间接”)成本报销。1 NIH资金是美国研究企业不可或缺的一部分,该企业领导着世界的变革性药物和稀有疾病治疗的创新研究和开发。我们的组织认为,削减NIH的总预算或F&A上限将大大减慢科学进步,并最终对患者造成伤害。NIH资金为患者提供了无数的突破,为那些面临罕见和常见疾病的人提供了希望。这些生物医学的进步可以改善生活质量,或者在某些情况下可以有效治愈毁灭性疾病。细胞和基因疗法(CGT)已彻底改变了各种疾病的治疗选择。NIH资助的关键组成部分是F&A的报销来支持研究。CGT改变了针对儿科和成年患者的某些血液癌的治疗范例,可以治愈诸如镰状细胞贫血和脊柱肌肉萎缩等遗传疾病,并正在为治疗新疗法锻炼诸如狼疮和亨廷顿病等严重疾病的新疗法以治疗的患者更多。尽管有强大的治疗渠道,但需要对基础,转化和早期临床研究进行2次投资,以建立在深厚的科学基础的基础上。这些是科学家获得赠款时提供给机构的资金。他们既不是补充也不重要。相反,它们是CGT研究和支持关键功能不可或缺的一部分,包括:制造和材料
摘要:纳米颗粒形成的合成方法产生了异质种群的纳米颗粒,在研究反应性时,可以研究单纳米颗粒的化学植物学特性的技术。虽然单一实体电化学实验已被充分记录在包括球形金属纳米颗粒,乳液液滴和细胞在内的对称对象的,但由于碰撞过程中物体方向的自由度增强,因此不对称物体为额外的挑战提供了额外的挑战。最近,由于高电荷密度能力,机械稳定性和生物相容性的结合,石墨烯已成为一种突出的电极材料,其应用范围从体内感应到工业能量转换反应。石墨烯纳米片(GNP)是一种准二维导电纳米材料,其在微米尺度上具有两个尺寸,而在纳米尺度上有一个,在功能上充当平面材料。在与铁甲醇(外球氧化还原介体)存在下与电极表面碰撞后,观察到广泛的电流响应,这些反应被观察到对称对象的广泛电流响应。在这里,我们介绍了相关的电化学和光学显微镜,以同时在单个实体级别探测化学和空间信息,以完全了解石墨烯纳米片的纳米级的碰撞动力学。此外,这种相关的技术允许对复杂电流响应的反卷积,从而揭示了数十秒范围内耦合的瞬态事件。从这些测量值中,稳态电流的变化用于氧化亚甲醇的氧化可能与GNP碰撞时电极表面积的变化直接相关,从而深入了解了单一实体的几何形状|没有两种组合技术的电极界面,否则将无法访问。
L. L. Bosttur,C。Capeleration,N。Amemiya,Soud,B。Achmann,J.S。成员Berg, A. Bersoni, A. Bertarelli, F. Boattini, B. Bordiment, P. Borgs of Sousa, M. Breschi, B. Caifr, X. Chaud, Senate, F. Debray, A. Dudarer, M. Fabber, S. Fabber, S. Farinon , P , T. Ogitsu , M. Palmer , J. Pavan , H. Picarz , Member Senior, IEEE , A. Portone ,L。Fine,E。Rochepault,L。Rossi,IEEE,M。Stalling,H.H.J。我是凯特(IE EEE),IEE,P。证书,Q。Vallone,A。Vanweij,R。VanWeelderen,M。Wozniak,A。Yamamoto,Y. Y. Yang,Y. Y. Zhai,IEE,IEE和A. Zlobin。
摘要 - 集合检测是各个领域的基本问题,例如机器人技术,计算物理和计算机图形。一般而言,碰撞检测被作为计算几何问题,而所谓的吉尔伯特,约翰逊和Keerthi(GJK)算法是当今最采用的解决方案。在1988年推出时,GJK仍然是计算两个3D凸几何形状之间距离或碰撞的最有效解决方案。多年来,它被证明是高效,可扩展的和通用的,在宽类凸形的形状上运行,范围从简单的原始词(球体,椭圆形,盒子,盒子,锥,锥,胶囊等)到涉及数千个顶点的复杂网格。在本文中,我们通过利用这两个问题是从根本上优化概率的事实来介绍了凸几何之间加速碰撞检测和距离计算的几项贡献。值得注意的是,我们确定GJK算法是凸优化中良好的Frank-Wolfe(FW)算法的特定子案例。通过调整将Polyak和Nesterov加速与Frank-Wolfe方法联系起来的最新作品,我们还提出了经典GJK算法的两个加速扩展。通过涉及日常生活对象的数百万碰撞对的广泛基准,我们表明,这两个加速的GJK扩展大大减轻了碰撞检测的总体计算负担,导致计算时间高达两倍。最后,我们希望这项工作将大大降低现代机器人模拟器的计算成本,从而允许在很大程度上依赖模拟(例如增强学习或轨迹优化)的现代机器人应用加速。