摘要。对MUON对撞机的新兴趣激发了对能源边界此对撞机选项所需的加速器技术的彻底分析。磁铁,无论是正常还是超导,都是从生产,加速和碰撞的整个加速器络合物中的关键技术之一。在本文中,我们启动了10 TEV Mass中心的MUON对撞机的磁铁规格目录。,我们将在美国摩尔穆恩加速器计划范围内执行的大量工作作为起点,以目前对能量覆盖范围的要求进行更新,并专注于磁铁类型和速度最高的性能。这些很好地代表了未来设计和开发将要解决的问题和挑战的信封。,我们最终考虑了合适的磁铁技术的第一个且指示性的选择,并考虑了既定的实践以及加速器磁体领域的透视发展。
模拟量子场论在广泛能量范围内的完整动态需要非常大的量子计算资源。然而,对于粒子物理学中的许多可观测量,微扰技术足以准确地模拟理论有效范围内除有限能量范围之外的所有能量。我们证明有效场论 (EFT) 提供了一种有效的机制,可以将传统微扰理论容易计算的高能动态与低能动态区分开来,并展示了如何使用量子算法从第一原理模拟低能 EFT 的动态。作为一个明确的例子,我们计算了在标量场论中存在两个 Wilson 线的时间有序乘积的情况下真空到真空和真空到单粒子跃迁的期望值,这与粒子物理学标准模型的 EFT 中出现的对象密切相关。计算是使用量子计算机的模拟以及使用 IBMQ Manhattan 机器的测量来执行的。
迷人的魅力,美丽的底部和夸克 - 格鲁恩等离子体在大型强调对撞机时代Santosh K. Das 1和Raghunath Sahoo 2摘要:在通过大爆炸创造了我们宇宙的几微秒之后,原始物质被认为是Matter-Matter Matter Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-Matter-tocark和Gluons and Gluons and Gluons of Corcark和Gluons的汤。这将在实验室中通过以超相关速度碰撞重核来创建。可以在相对论重的重离子撞机(RHIC),美国纽约,纽约,美国纽约州布鲁克哈文国家实验室和大型的Hadron Collider(LHC)的Quark和Gluons的等离子体,称为Quark-Gluon等离子体(QGP)。重的夸克,即魅力和底部夸克,被认为是表征QGP的新型探针,因此被认为是量子染色体动力学(QCD)物质。重型夸克传输系数在理解QGP的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克传输系数,这是现象学研究的关键成分,它们有助于解散不同的能量损失机制。我们对QGP中的重夸克阻力和扩散系数进行了总体视角,并讨论了它们的潜力,作为解散不同的强调机制的探针,并探测了在非中央重型离子碰撞中产生的初始电磁场。对未来测量结果进行了实验观点,并特别强调了重型风味,这是新技术发展的下一代探针。关键词:大爆炸,夸克 - 杜伦等离子体,重型离子碰撞,重型风味
大型强子对撞机时代迷人的粲夸克、美丽的底夸克和夸克胶子等离子体 Santosh K. Das 和 Raghunath Sahoo* 宇宙通过大爆炸诞生后几微秒,原始物质被认为是物质基本成分——夸克和胶子的混合物。预计这将在实验室中通过超相对论速度下的重核碰撞产生。在美国纽约布鲁克海文国家实验室的相对论重离子对撞机和瑞士日内瓦欧洲核子研究中心的大型强子对撞机的能量和光度边界上,可以产生一种由夸克和胶子组成的等离子体,称为夸克胶子等离子体 (QGP)。重夸克,即粲夸克和底夸克,被视为表征 QGP 的新探针,因此可以表征产生的量子色动力学物质。重夸克传输系数在理解 QGP 的性质中起着重要作用。核抑制因子和椭圆流的实验测量可以限制重夸克输运系数,这是现象学研究的关键因素,有助于解开不同的能量损失机制。我们对 QGP 中的重夸克拖拽和扩散系数进行了总体介绍,并讨论了它们作为探测器解开不同强子化机制以及探测非中心重离子碰撞产生的初始电磁场的潜力。从新技术发展的角度来看,未来测量的实验前景被特别强调为下一代探测器的重味。关键词:大爆炸、重离子碰撞、重味、夸克胶子等离子体。20 世纪下半叶,Murray Gell-Mann 和 George Zweig 发现了强子的夸克模型,Glashow、Salam 和 Weinberg(以及许多其他人)通过基本力的统一发现了粒子物理的标准模型,这在粒子物理学中取得了巨大的成功。基础科学在寻找物质基本成分的同时,也为粒子探测和加速器技术的发展做出了巨大贡献,产生了巨大的直接和间接的社会效益。就目前对物质成分的理解而言,我们有六夸克、六轻子、它们的反粒子和力载体。然而,在这其中,我们只遇到轻夸克(LQ)——上夸克和下夸克,以及正常核物质中的电子。其他重粒子是在宇宙射线和粒子加速器的高能相互作用中产生的。虽然这些基本粒子如夸克和轻子自由存在,但它们的性质并不相同。
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。
大型强子对撞机是欧洲核子研究中心日内瓦设施建造的粒子加速器,其主要目标是研究宇宙知识标准模型中著名的基本粒子的边界。借助 LHC,2012 年对希格斯玻色子等的观测成为可能,随着加速器设计的不断升级,未来几年将描述新的现象。TDE 块构成光束轨迹最后一段的光束倾卸系统,由多个不同密度的石墨块制成。其中,柔性石墨的密度最低(1-1.2 g/cm3)。它与多晶石墨和热解石墨等典型的石墨形式不同,因为在生产过程中不添加粘合剂。由于颗粒粗糙度引起的粘合摩擦力赋予材料典型的柔韧性并有助于变形机制。为了预测材料在梁冲击能量增加时的反应,需要在广泛的温度和应变率范围内深入研究材料行为。在这项初步工作中,在室温下在平面方向上观察了商用柔性石墨(SGL Carbon 的 Sigraflex ®)的静态特性。为了可靠地测量前部和边缘样品表面的应变,采用了两侧 DIC;横梁位移速率在 0.01-10 mm/min 之间变化。最后,讨论了应力应变行为和变形机制。
“如何度过人工智能寒冬” James Luke 博士,IBM 杰出工程师和首席发明家 如果您不知道,人工智能寒冬是指在人们对人工智能的期望达到顶峰之后出现的低迷,资金枯竭,专业人士对其潜力嗤之以鼻。70 年代末 80 年代初发生过一次人工智能寒冬,十年后又发生过一次——最后一次是在 1992 年。在这样的“寒冬”里,人们对人工智能嗤之以鼻并不罕见——James Luke 深情地回忆起 IBM 的一位(至今仍是)高管在他职业生涯早期告诉他,“如果你想在公司有所成就,就离开人工智能”。但即便是 Luke 也承认,考虑到挑战的规模,出现怀疑者并不奇怪。Luke 在会议开幕式主旨演讲中表示:“我们试图用人工智能重塑人脑的智能,这是人类面临的最大工程挑战。” “它比曼哈顿计划、比大型强子对撞机还要大——但我们通常只以两三个人组成的团队进行研究。”尽管如此,他仍敦促与会代表对人工智能保持积极态度,因为如果以正确的方式对待,人工智能可以发挥作用并带来巨大的机遇。那么,什么才是“正确的方式”?卢克说,人工智能有效用例的最佳例子之一仍然是 1997 年超级计算机深蓝与世界冠军国际象棋选手加里卡斯帕罗夫之间的著名比赛。深蓝曾在 1996 年挑战卡斯帕罗夫并失败,而它的架构师 IBM 决心不再重蹈覆辙。IBM 工程师寻求另一位国际象棋大师的帮助来构建深蓝,并对计算机进行编程,使其能够预测未来 14 步。从本质上讲,它复制了人类的能力,但通过巨大的规模进行了扩展。尽管“深蓝”赢得了 1997 年的锦标赛,但它的局限性也暴露无遗。当时参与打造它的大师说:“深蓝每秒评估两百万步,我评估三步。但我怎么知道该评估哪三步?”卢克说,这句话完美地概括了人工智能的缺点:“我们还没有解决这个问题,我们不明白大师如何知道该评估哪三步。这是智能和人工智能之间差异的一个很好的例子。人工智能不会比人类更好——人类脑细胞比电子神经元复杂得多。”他补充说,人工智能经常被认为比人类智能更好,因为它不会忘记东西。但卢克认为,人类忘记的能力是智能的一部分,因为忘记可以帮助我们“概括、实验和学习”——更不用说不会被我们做过的所有可耻的事情所打败。卢克分享了三条让人工智能发挥作用的建议:
大型强子对撞机(LHC)是一种新的科学工具。工具(用于辅助观察和测量的仪器)的发明对科学的进步至关重要。尽管关于纯研究和应用研究的相对优点存在激烈的争论,但仪器对这两个分支都至关重要,是一座和谐的桥梁。在十九世纪末和二十世纪初,基础研究和应用研究的进步被用于创造更强大的工具。其中许多是为了舒适和娱乐而设计的,但它们用于增进对自然的理解引领了潮流。这真的很舒服:研究创造了新知识,这使得创造新仪器成为可能,这使得发现新知识成为可能。举个例子:伽利略在荷兰听说了他们的发明后,建造了许多望远镜。在一个令人震惊的周末,他将望远镜转向天空,发现了木星的四颗卫星!这让他确信地球确实在运动,正如哥白尼所推测的那样。望远镜的进化最终让人类能够测量出我们宇宙的浩瀚,宇宙中有数十亿个星系,每个星系都有数十亿个太阳。在更复杂的科学中,开发出了更强大的望远镜。与我们关于 LHC 的书相关的另一个例子是:电子的结构和特性是人们在了解世界如何运作的伟大探索中所能获得的最基本的东西。但其中许多特性使电子成为无数仪器中的重要组件。电子发出 X 射线用于医疗用途和确定生物分子的结构。电子束制造了示波器、电视机以及实验室、医院和家庭中数以百计的设备。一项令人印象深刻的技术使粒子加速器中的高能电子束得以控制。这些是在 20 世纪 30 年代发明的,可提供有关原子大小、形状和结构的精确数据。为了探测原子核,需要更高的能量,质子加速被添加到物理学家的工具箱中。