C. Allaire 60·R。修订22·E. -C。关联3·M。Baland33·M。黄油28·I. Chatagnon 27·E.Cisbani 37·E.W。Cline 46·S. S. Dash 23·C. Dean 31·W. Deconinck 54·A. Deshpand 3.6·M 27,64·M.手指10·M。FingerJr. 10·E。 J. Huang 3·A.Jalotra 53·D.D.Jayakodige 21,27·B。Joo39·M。Junaid56·N. Callant 62·P.Karande 30·B.Kriesten·R.R.Elayavalli 61·Li 41·Li 41·Li 41·Li 39·F. Liu 39·F. Liu 39·F. Liu 39·F. liuti 58·G.Matusek 15·M。Mceneney15·D.McSpadden 27·T. Menzo 51·T.Miceli 17·V.Mikuni 65·R.Montgomery·B.Nashman 16·J。海峡16·D.Richford 2·B。J。Roy 38·D.Roy 45·A.Saini 17·N·N·萨莫27·T.Satogata 27.40·G·S·斯伯利尼(G. Sborlini) Syodmok 26·J。Stevens64·P。Sone64·L。Suarez64·K。Suresh56.64·A. -N.tawfik 19·F。ToralesAcosta 29·N. Tran 17·R。Trotta47·F. Jt。 WU 54·N。Zachari59·P。Zurita
响应于2013年欧洲粒子物理战略的建议,这是对所谓的高能LHC(HE-LHC)CERN进行能源升级的概念设计工作,作为未来圆形围栏研究的一部分。HE-LHC机器(旨在在现有的LHC隧道中使用16吨磁铁技术)将在27 TEV(〜2×LHC)的质子碰撞中提供质子碰撞,总储存的能量为1.34 gJ(〜4×LHC)。通过调整LHC准直探针,构思了He-LHC的Betatron清洁插入的第一个布局,需要维持至少10秒钟的次数,即约1.86兆瓦的影响,对应于12分钟的光束寿命,而无需诱导任何磁铁淬火或对其他加速度造成任何损坏。在本文中,我们通过粒子跟踪和相互作用计算评估了HE-LHC机器在HE-LHC机器中质子束操作的准直插入的功率沉积。通过三步模拟方法评估了对温暖元件以及超导分散抑制磁体的束损失影响。尤其是对于未来提议的高能LHC,我们证明了在分散抑制器中添加局部准直仪的必要性,并且我们发现了准直插入中梁线“ Dogleg”的有害后果。
高能对撞机中基本粒子量子特性的测试开始出现。顶夸克和反顶夸克系统中的纠缠和贝尔不等式违反尤其令人感兴趣,因为顶夸克是经历级联衰变的不稳定粒子。我们争论顶夸克和反顶夸克在不同衰变阶段的空间分离标准。我们考虑了三个不同情况下的因果分离:顶夸克衰变、W 玻色子衰变以及轻子/喷流与宏观仪器接触时。我们表明,当要求顶夸克和 W 玻色子都在空间间隔内衰变时,事件的空间分数最小。对于通常需要贝尔不等式违反的高不变质量,这几乎与顶夸克衰变要求相同。我们还包括一个选项,用于将顶夸克衰变中的 b 夸克的角度相关性用于自旋相关性测量。我们要求顶夸克和 b 强子衰变都是空间分离的。再次,我们发现在高不变质量下,它几乎与顶夸克和反顶夸克之间的空间分离要求相同。我们为我们提出的标准提供了数值。如果满足这样的标准,则保证系统不存在因果关系。
该项目提议使用 3FD 流体动力学模型和 UrQMD 和 QGSM 传输模型研究 NICA 对撞机能量下的相对论重离子碰撞 (rHIC) 中的涡量、定向流和强子冻结等现代高能物理中的实际现象。应研究以下现象:反应平面和方位平面中的涡量、涡量中的奇点、超子的极化、涡量和定向流 v 1 的相互关系、v 1 的减小及其在中快速度时的符号变化以及强子的冻结,在 rHIC 期间夸克胶子等离子体 (QGP) 形成的情况下。应将结果与纯强子物质的计算进行比较。这项研究将确定对实验中从解耦阶段到强子阶段的相变信号最敏感的可观测量和分布。
模拟量子场论在广泛能量范围内的完整动态需要非常大的量子计算资源。然而,对于粒子物理学中的许多可观测量,微扰技术足以准确地模拟理论有效范围内除有限能量范围之外的所有能量。我们证明有效场论 (EFT) 提供了一种有效的机制,可以将传统微扰理论容易计算的高能动态与低能动态区分开来,并展示了如何使用量子算法从第一原理模拟低能 EFT 的动态。作为一个明确的例子,我们计算了在标量场论中存在两个 Wilson 线的时间有序乘积的情况下真空到真空和真空到单粒子跃迁的期望值,这与粒子物理学标准模型的 EFT 中出现的对象密切相关。计算是使用量子计算机的模拟以及使用 IBMQ Manhattan 机器的测量来执行的。
从而大幅节省房地产和基础设施。此外,紧凑性还会降低给定光束强度的光束存储能量,这是高能、高亮度机器中的一个重要问题。最后,超导性也是通过两个复合过程降低加速器功耗并因此降低运行成本的一种手段:通过使其变得更小(上述紧凑性论点),以及通过降低电磁铁单位长度的功率。超导同步加速器的功耗本质上是低温制冷的功耗,它与机器的周长成比例,而与磁铁中的磁场无关。 LHC 的主要技术要点是研发、工业化生产 1232 个超导偶极子(场强为 8.3 T)、400 个超导四极子(梯度为 223 Tm -1 )和数千个其他超导磁体,这些超导磁体用于校正主场误差、调整束流参数和使束流在高亮度下发生碰撞 [3]。所有这些磁体均由工业制造,能够重复产生正确强度和均匀性的场,精度高达 10 -4 。主偶极子(图 1)具有双孔径,具有相等且相反的场,以便沿平行路径弯曲两束反向旋转的质子或离子束。两组相同的线圈组装在一个通用的机械和磁性结构中,并安装在一个低温恒温器内。这种解决方案在横向空间占用方面既紧凑又高效,因为一个孔径的杂散场由磁轭引导,会对相邻孔径的场产生影响。每个孔径中的线圈都用卢瑟福型 Nb-Ti 电缆缠绕,分为两层,电流密度分级,遵循“cos θ”几何形状。当磁体通电时,巨大的电磁力往往会打开结构,而非磁性奥氏体钢的刚性环会对此作出反应,这些环位于磁性钢轭上。整个组件包含在一个奥氏体不锈钢压力容器中,该容器充当氦气外壳。随着磁场的增加,超导体的临界电流会降低,这限制了它们在高场应用中的使用。这严重限制了众所周知的 Nb-Ti 合金在 4.2 K 的正常沸腾氦气中的使用。更先进的超导体,如 Nb 3 Sn
TS 模式也可以不采用蛇形线来表示对应于整数自旋共振 γG = k 的离散能量值。这里 γ 是相对论因子,G 是旋磁比的异常部分。对于质子,这样的能量值数量为 25,能量步长为 0.523 GeV。对于氘核,只有一个点,总能量为 13.1 GeV。在理想的对撞机晶格中,自旋运动会退化:任何轨道位置的任何自旋方向都会在每次粒子转动时重复。这意味着 TS 模式下的自旋调谐为零,粒子处于 TS 共振状态。在这种情况下,自旋运动对磁场的微小扰动高度敏感,这些扰动与晶格缺陷以及回旋加速器和同步加速器粒子的振荡有关。在实际情况下,自旋简并被消除,因为极化沿着由对撞机晶格缺陷决定的未知方向变得稳定。极化控制由自旋导航器提供,自旋导航器是基于弱螺线管的设备,可在 SPD 相互作用点设置所需的极化方向。导航器对自旋的影响应大大超过小扰动场的影响 [4]。TS 模式下的极化控制方案如图 3 所示。两个对称放置在 SPD 周围的自旋导航器用于稳定 SPD 垂直平面上所需的极化方向(Ψ 是极化和粒子速度矢量之间的角度)[3]。
•[38,23,5,11]使用此想法在各种任务中执行模式识别,包括对癌细胞中核染色质模式的区分,对面部表情,鸟类物种,星系形态的差异的检测,亚细胞形态,亚细胞蛋白质分布,从MI-Collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider collider的差异。•[31]考虑了该图像产生建模的框架,并通过展示了数字和面部图像的生成建模,在阿尔茨海默氏病神经毒气或甲状腺核图像的背景下进行PET扫描。•[22]遵循这种方法,以改善面部图像的分辨率。在此阶段,从数学角度来看,线性化最佳传输框架的良好实际行为是合理的。嵌入的实际好处是,可以在概率指标的家族中使用经典的希尔伯特统计工具箱,同时保留Wasserstein几何形状的某些特征。嵌入µ 7→t µ的一个特别好的特征是,其在l 2(ρ,r d)中的图像是凸的,即最佳的barycenter
抽象的化石燃料满足了人类大部分能量需求,由于其高碳排放而导致气候变化。有两种类型的能源可以替代化石燃料:可再生和核能。核能来源在效率和可持续性方面更有优势。由于脑尿液的产生要低得多,将th th的用作融合反应堆中的核燃料将有助于减少放射性废物。融合反应器被认为是有希望的,仍处于研发阶段。在这方面,混合融合 - 融合反应器似乎更有希望,而最近提出的Muon催化的DD融合与级联反应器的组合值得赞赏。在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。 关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1. 简介在这项研究中,我们表明使用DD碰撞器而不是Muonic融合具有显着优势。关键字:DD对撞机,thor,杂交反应堆,融合,裂变,核能1.简介