摘要带电粒子的重建将是高亮度大型强子对撞机(HL-LHC)的关键计算挑战,其中增加的数据速率导致当前模式识别算法的运行时间大大增加。此处探索的另一种方法将模式识别表示为二次无约束的二进制优化(QUBO),该方法允许在经典和量子退火器上运行算法。虽然提出的方法的总体时间及其缩放量仍待测量和研究,但我们证明,就效率和纯度而言,可以实现LHC跟踪算法的相同物理性能。将需要进行更多的研究以在HL-LHC条件下实现可比的性能,因为增加的轨道密度降低了QUBO轨道段分类器的纯度。
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。
在高能粒子碰撞中,带电轨迹查找是一项复杂而又至关重要的工作。我们提出了一种量子算法,特别是量子模板匹配,以提高轨迹查找的准确性和效率。通过引入数据寄存器并利用新颖的 oracle 结构来抽象量子振幅放大例程,可以将数据解析到电路并与命中模式模板匹配,而无需事先了解输入数据。此外,我们解决了命中数据缺失带来的挑战,证明了量子模板匹配算法能够从命中数据缺失的命中模式中成功识别带电粒子轨迹。因此,我们的研究结果提出了适合实际应用的量子方法,并强调了量子计算在对撞机物理学中的潜力。
快速实现超高能电子治疗 CERN 和瑞士洛桑大学医院 (CHUV) 继续致力于开发创新的 FLASH 放射治疗设施。该设施基于 CERN 开发的 CLIC(紧凑型线性对撞机)加速器技术,将使用超高能电子 (VHEE) 在不到 200 毫秒的时间内治疗深层肿瘤。在如此短的时间内治疗肿瘤利用了所谓的 FLASH 效应,在产生更少副作用的同时提供等效控制。2021 年,CHUV 获得了一笔大额捐款,用于与 CERN 共同建设该设施。此外,在 CERN 的 CLEAR 测试设施进行的实验展示了如何将 VHEE 光束聚焦到深层肿瘤上,并测量了短照射时间的剂量诊断性能。
基于核粉的离子对撞机设施(NICA)正在俄罗斯杜巴纳联合核研究所(JINR)建设。nica将在质量中心系统中的√snn = 4至11 GEV的范围内的能量碰撞(198 Au + 198 Au,209 Bi + 209 Bi)在√snn = 4至11 GEV的范围内,以提供在高净 - 巴里密度区域研究此问题的机会[1]。NICA的多用途检测器(MPD)实验将测量对状态方程(EOS)敏感的各种突出的诊断探针和强相互作用的物质的转运性能[2,3]。中,最突出的是,相对于碰撞对称平面而言,生成的Hadron的方位角集体流[4]。可以通过傅立叶系数v n在粒子方位角分布的扩展中进行量化。
费米实验室的使命是成为粒子物理发现的前沿实验室。该加速器综合设施为宇宙基本性质的研究提供了动力,是世界上唯一一个既能为科学生产低能和高能中微子束,又能进行精密科学实验的加速器综合设施。长基线中微子设施 (LBNF) 和深层地下中微子实验 (DUNE) 的建设,以及质子改进计划 II (PIP-II) 项目实现的世界上最强的中微子束,将成为美国能源部国家实验室的第一个国际大科学项目。费米实验室通过其在中微子、对撞机、精密和宇宙科学方面的实验和项目,将美国研究人员整合到全球粒子物理事业中。该实验室的科学研发推动了加速器、探测器、计算和量子技术在科学和社会中的应用。
粒子物理学是一门科学分支,旨在通过研究物质和力的最基本成分来了解自然界的基本规律。这可以在受控环境中使用粒子加速器(如大型强子对撞机 (LHC))或在不受控环境中(如宇宙中的灾难性事件)完成。粒子物理学的标准模型是数十年理论工作和实验的成果。虽然它是一种非常成功的有效理论,但它不允许重力的积分,并且已知有局限性。粒子物理学的实验需要大量复杂的数据集,这对数据处理和分析提出了特殊的挑战。最近,机器学习在物理科学中发挥了重要作用。特别是,我们观察到深度学习在粒子物理学和天体物理学的各种问题中的应用越来越多。超越典型的经典
摘要 本文总结了在以 s 通道中的介质粒子交换为特征的理论模型背景下寻找费米子暗物质候选者的工作。所考虑的数据样本包括大型强子对撞机在其第 2 次运行期间以√ s = 13 TeV 的质心能量进行的 pp 碰撞,由 ATLAS 探测器记录,对应能量高达 140 fb − 1。结果的解释基于简化模型,其中新的介质粒子可以是自旋为 0,与费米子进行标量或伪标量耦合,也可以是自旋为 1,与费米子进行矢量或轴矢量耦合。排除限是从各种搜索中获得的,这些搜索的特点是最终状态以共振方式产生标准模型粒子,或产生与大量缺失横向动量相关的标准模型粒子。
摘要 - 理解辐射对环氧树脂功能性能的影响对于它们在未来的粒子加速器(如未来的圆形碰撞器(FCC))中的应用至关重要。我们比较了可用于磁铁线圈真空浸渍的六个环氧树脂系统的辐照诱导的衰老率。衰老。dma的存储和损失模量的演变揭示了交联和链分裂对玻璃过渡温度(T g)的竞争影响。衰老率在不同的树脂中差异很大,并且在My750树脂系统中观察到最快的老化,T g以大约9°C/mgy的速率降低。