对于霉菌,任何低于 100 CFU/m 3 的值都被视为可接受的生存环境。任何在 100-500 CFU/m 3 之间的值都值得对致病真菌进行调查。超过 500 CFU/m 3 的值是不可接受的,建议在短期内进行补救。对于细菌,任何低于 500 CFU/m 3 的值都被视为可接受的生存环境,但一旦值增加到 4,000 CFU/m 3 左右,它就变得不适合生存。在所采集的地毯和硬木样本中,RLU 均呈肯定的正值。这意味着存在 ATP,其原因可能是微生物。进行了进一步的测试以测量霉菌(在 MEA 平板上)和细菌(在 TSA 平板上)的菌落形成单位。我们发现地毯中的微生物活性与空气中可培养微生物之间存在弱正相关性 (r = 0.161)(但统计上并不显著;p = 0.512),这表明地毯灰尘可能是空气中微生物的来源,而硬木则不同,硬木的 RLU 水平与菌落形成单位没有显示出任何正相关趋势(r = -0.027;p = 0.908)。这一观察结果表明灰尘与空气中微生物之间的关系很复杂。
摘要 —本文采用带单位反馈的闭环系统中的 PID 控制器来控制机器人机械手。控制器的使用难点在于参数调整,因为调整参数仍然使用试错法来找到 PID 参数常数,即比例增益 (K p )、积分增益 (K i ) 和微分增益 (K d )。在这种情况下,蚁群优化算法 (ACO) 用于寻找 PID 的最佳增益参数。蚂蚁算法是一种组合优化方法,它利用蚂蚁从巢穴到食物所在位置寻找最短路径的模式,该概念应用于通过最小化目标函数来调整 PID 参数,从而使机器人机械手具有改进的性能特征。本研究采用 Matlab Simulink 环境,首先建立系统模型,然后利用蚁群算法确定适当的系数 𝐾 p 、 𝐾 i 和 K d ,以使机器人机械手两个关节的轨迹误差最小化。然后,将这些参数应用于机器人系统。根据计算机仿真结果,与经典 PID 相比,所提出的方法 (ACO-PID) 给出了一个具有良好性能的系统。
皮肤鳞状细胞癌 (cSCC) 是具有转移潜能的最常见癌症类型之一。microRNA 在转录后水平调节基因表达。在本研究中,我们报告 miR- 23b 在 cSCC 和光化性角化病中下调,并且其表达受 MAPK 信号通路调控。我们发现 miR-23b 抑制与关键致癌途径相关的基因网络的表达,并且 miR-23b 基因特征在人类 cSCC 中富集。miR-23b 降低了 FGF2 在 mRNA 和蛋白质水平的表达,并削弱了 cSCC 细胞的血管生成诱导能力。miR23b 过表达抑制了 cSCC 细胞形成集落和球体的能力,而 CRISPR/Cas9 介导的 MIR23B 缺失导致体外集落和肿瘤球形成增加。与此一致,miR-23b 过表达的 cSCC 细胞在注射到免疫功能低下的小鼠体内后,形成的肿瘤明显较小,细胞增殖和血管生成减少。从机制上讲,我们证实 RRAS2 是 miR-23b 在 cSCC 中的直接靶标。我们表明 RRAS2 在 cSCC 中过表达,干扰其表达会损害血管生成和集落和肿瘤球的形成。总之,我们的结果表明 miR-23b 在 cSCC 中以肿瘤抑制的方式发挥作用,并且在鳞状细胞癌变过程中其表达会降低。
摘要:现代生物学,尤其是合成生物学,在很大程度上依赖于DNA元素的结构,通常是以质粒的形式进行的。质粒用于多种应用,包括用于随后纯化的蛋白质的表达,用于生产有价值化合物的异源途径的表达以及对生物学功能和机制的研究。对于所有应用,构建质粒后的关键步骤是其序列验证。传统的序列确定方法是Sanger测序,每反应限制约为1000 bp。在这里,我们提出了一种高度可扩展的内部方法,用于使用长阅读纳米孔测序快速验证放大的DNA序列。我们开发了两步扩展和转座酶策略,为双条形码测序提供了最大的灵活性。我们还提供了一个自动分析管道,以快速可靠地分析测序结果,并为每个样本提供易于解释的结果。用户友好的duba.Flow开始到虚拟管道广泛适用。此外,我们表明,使用duba.Flow的构造验证可以通过条形码菌落PCR扩增子测序进行,从而加速了研究。关键字:合成生物学,长阅读测序,DNA构造验证,菌落PCR,实验室自动化,双条形码扩增子测序■简介
对从榴莲 ( Durio zibethinus L.) 果壳中提取的多糖凝胶 (PG) 进行了体外活性研究,以评估其抗微生物活性。采用简单的琼脂扩散和肉汤稀释法,通过微生物测定技术测定了 PG 对两种细菌菌株金黄色葡萄球菌和大肠杆菌以及两种酵母菌株白色念珠菌和酿酒酵母的抑制活性。在蒸馏水中浓度为 0.32% 的 PG 在 TSA 培养基上对金黄色葡萄球菌显示出抑制区,在 TSB 培养基中对金黄色葡萄球菌的 MIC 为 0.64 mg/ml。然而,在蒸馏水中1.25%和2.50%的最低PG浓度在MNG琼脂培养基上分别对金黄色葡萄球菌和大肠杆菌产生了抑制活性,并且获得了具有清晰边界的抑制区。在蛋白胨肉汤培养基中,1%的最低浓度的PG对大肠杆菌和金黄色葡萄球菌产生了抑制活性:24小时时菌落数分别降至零和15%。然而,在0.1% PG存在下,NSS中的两种测试细菌菌株均受到抑制:24小时时菌落数降至零。PG对本研究中的两种测试酵母菌株不显示抑制活性。
本地益生菌在当地食品中发现了对人类肠道健康等民族生态学的更适应性。因此,这项研究旨在隔离,选择和将土著微生物作为益生菌候选者,即gatotan,即来自木薯的印尼发酵食品。将潜在的益生菌溶解在pH 2.0的人造胃酸中,并孵育2小时,然后使用麦芽提取物培养基中的De Man Rogosa Sharpe和酵母进行选择性分离乳酸细菌(LAB)。鉴定了包括形态和生理特征以及诸如PCR指纹等基因型的表型。结果表明,三个分离株中的两个具有可能在酸性环境中生长的益生菌发展的潜力。BGP(LAB)和YGK(酵母)分离株的生存最高的人造胃酸为pH 2.0。此外,来自木薯变量的BGP。白色(Malang 2)具有牛奶白色菌落,棒状的,起伏的菌落边缘,革兰氏阳性细菌,非运动,阴性过氧化氢酶和杂型。木薯变量的YGK。黄色(Malang 4)也具有白色颜色的特征,不规则的形状,粗糙的表面,不透明的透明度,球体细胞形态和淀粉液指数为1.06±0.12 mm。最终的基因型表征分别将分离株分别为乳酸乳杆菌和丘比亚维兹维氏菌。
在30°C-35°C孵育24-48小时后观察到的文化特征与蛋黄乳液一起在Baird Parker琼脂底部使用。生物(ATCC)菌落金黄色葡萄球菌亚种的生长颜色。金黄色葡萄球菌(25923)好灰色黑色闪亮大肠杆菌(25922)无-Kocuria ronizophila菌株PCI 1001(9341)可怜的非常小的棕色黑色黑杆菌(6633)
抽象的曲霉曲霉被认为是负责引起疾病并损害食物和饲料商品的真菌之一。这种真菌能够产生对人和动物都有有毒特性的霉菌毒素。A. flavus的污染跨越了广泛的范围,从田间种植开始,一直延伸到存储设施。一种管理这种真菌的替代方法涉及其增长环境的修改。微生物固有地具有最低水活性(W)对其代谢过程至关重要的价值。这项研究的目的是修改A W值以抑制A. flavus的生长。这项研究是使用补充甘油和蒸馏水的PDA培养基在体外进行的,以建立0.90、0.92、0.95和0.97的W条件。在孵化后的第七天,结果表明,对于0.90,a表现出对氟曲霉生长的显着抑制作用,平均菌落直径为1.34 mm,其次是0.92,然后0.92为1.54,然后0.95为1.83 mm,0.97为1.97 mm。相反,使用0.90的治疗显示最低的抑制作用(1.34 mm),0.97的抑制作用显示最高(1.84 mm)。所有改良的水活性处理都对黄曲霉的生长产生了影响。随着A W值的降低,A. flavus的生长变得越来越受到限制。关键字:曲曲霉,水活动(A W),菌落直径
图1使用下一代AMA1质粒增强了麦克利荧光蛋白的表达。A。分析了MCHERRY表达的AMA1质粒的示意图,其选择标记物具有不同的变体。b荧光曲霉曲霉菌落的荧光照片显示,用Ubi-M-Pyrg和Ubi-Y-Y-Pyrg质粒转化的菌落中荧光增加。来自转化菌落的孢子中麦克利荧光的流式细胞仪分析表明,使用UBI-Y-Y-PYRG质粒实现了最均匀和最高的麦克利信号。在图S1a中,来自不同转化菌落的重复之间的平均荧光和重复的直方图。在液体培养中生长的菌丝体的共聚焦显微镜图像显示,在含有UBI-M-PYRG和UBI-Y-PYRG质粒的菌丝体中的表达增加。ImageJ火灾校准栏代表不同级别的MCHERRY信号。在图中重复S2。e。对等差质粒浓度下不同质粒的转化效率的评估显示,质质质质量降低的质粒的转化效率降低了,将pyRG融合到降解标签。字母表示由ANOVA确定的,并在Tukey后的测试中确定了显着不同的组。F.在选定和非选择条件下固体培养基上菌落生长速率的比较表明,在选择性条件下,携带UBI-M-PYRG和UBI-Y-Y-PYRG质粒的菌株的生长较慢。星号代表pADJ <0.05 <0.05,韦尔奇的t检验表示选择性和非选择性培养基之间的直径差异,用于携带每种质粒的菌株。