基本法规................................................................................................................................22 美国 FCC 法规...................................................................................................................22 2.4 GHz 和 5 GHz 无线网络适配器的监管信息........................................................................22 激光声明................................................................................................................................23 加拿大......................................................................................................................................23 欧盟和欧洲经济区合规性......................................................................................................24 ENERGY STAR ......................................................................................................................25 欧亚经济共同体认证....................................................................................................................27 德国......................................................................................................................................27 土耳其 RoHS 法规................................................................................................................28 乌克兰 RoHS 合规性............................................................................................................28
在本文中,我们解决了如何用新的数学严谨定义来替代几种色彩感知属性的直观定义的问题。我们的框架是最近开发的类似量子的色彩感知理论,它与经典的 CIE 模型及其颜色外观对应物相比,具有根本性的观点变化。我们展示了量子信息概念(例如效应、广义状态、后测量变换和相对熵)如何提供似乎完美适合模拟色彩感知属性(例如亮度、亮度、色彩度、色度、饱和度和色调)的工具。通过严格推导所谓的亮度恒常现象,可以说明这些新定义的有效性。
消费者色彩神经营销 消费者色彩神经营销 Marcelo Patricio Obando Changuán* Jorge Aníbal Loya Simbaña* 摘要 颜色和神经营销对购买偏好的影响在于,大脑可以通过将颜色作为记忆储存在思想中来联想颜色。目的是展示颜色对消费者购买的影响,并验证他们是被包装和尺寸还是产品所吸引。 根据科学数据对书目和描述性研究进行了审查,其中包括 20 至 27 岁的 ESPE 学生。有 30 名受访者询问消费者对颜色选择的偏好,50 名受访者询问颜色和产品特征对购买的影响。方法是展示 3 种颜色的 3 种物品的 24 张图片和 10 个神经营销问题以供选择。结果表明,颜色会影响消费者的购买行为,并且 100% 的人认为尺寸、颜色和外观是影响无意识购买的重要因素。总之,黄色、蓝色、红色对心理有影响,视觉神经营销对购买决策有影响。还有广阔的世界需要探索,因为每个人都会管理自己的情绪和冲动。关键词:颜色、购买、消费者、影响力、神经营销学、影响力 RESUMEN La influencia de los colores y el Neuromarketing en preencias de adquisición radica en que la mente puede asociar colores albergando en el pensamiento como un recuerdo.目标
摘要:钻石中的颜色中心在量子技术中具有广泛的实用性,但它们的创造过程本质上仍然是随机的。确定性创建可以使用设备就绪的钻石平台中的颜色中心可以提高产量,可扩展性和集成。使用脉冲激发激发的最新工作在确定性地造成散装钻石的缺陷方面表现出了令人印象深刻的进步。在这里,我们将这种激光写入过程扩展到刻在钻石膜中的纳米光子设备中,包括纳米骨和光子谐振器,并在低温温度下以书写和随后的读数进行写作。我们证明了钻石纳米木中心的碳空位(GR1)和氮空位(NV)中心的光学驱动创建,并从中观察到增强的光致发光收集。我们还制造了靶标谐振器,并利用其腔模式来局部放大激光编写场,从而使用Picojoule Write-Pulse Energies产生缺陷,比在散装钻石演示中通常使用的脉冲能量低100倍。关键字:激光写作,钻石纳米光子学,颜色中心,空腔耦合,牛乳天线,纳米质
已用于机械响应变色聚合物[8–10],而电子转移机制已被用于制造电致发光机器人皮肤。[11] 具有应力可调结构色的软材料也已开发出来,使用水凝胶基质中的定向纳米片或有机双层、聚合物渗透的光子晶体和液晶系统。[4,5,12] 尽管概念验证材料和设备已经成功展示,但目前这些材料在自主和节能的块体设备中的利用受到以下因素的阻碍:诱导颜色变化所需的高能量输入、速度慢、不可逆性以及扩大合成和制造工艺的挑战。与人造设备相比,鱼、鱿鱼和变色龙等动物已经进化出优雅、节能的细胞内结构,可以动态控制颜色,从而进行交流、警告、保护和伪装。 [13–17] 其中一些动物的彩虹色是由一种名为虹细胞的特殊细胞内的层状纳米结构反射光线的建设性干涉产生的。颜色和亮度的变化是通过细胞介导对这些反射结构的层状间距和方向的操控而产生的。例如,霓虹灯鱼只需使用所谓的百叶窗机制倾斜高反射率的鸟嘌呤板,就能将颜色从蓝绿色(≈ 490 纳米)变为靛蓝色(≈ 400 纳米)(图 1 A、B 和电影 S1,支持信息)。[13] 在电刺激虹细胞的驱动下,颜色变化是可逆的,而且速度超快。由于该机制依靠入射光作为动力源,并且反射光线通过建设性干涉得到加强,因此这些动物可以用最少的能量输入产生强烈、动态可调的颜色。人们还广泛探索了堆叠的薄片形式的层状结构,以便对合成材料的性质和功能进行结构控制。受软体动物壳结构的启发,粘土和无机薄片排列成珍珠层的砖和砂浆结构,可用于显著提高聚合物基复合材料的刚度和断裂韧性。[18–22] 除了机械性能外,人们还开发了具有精心设计的薄片取向的结构材料,以提高锂离子电池石墨阳极的充电速率[23],或实现受植物启发的变形结构[24]和软机器人的形状变化。[25] 与许多可以实现的组装过程相比,
摘要第一篇论文调查了使用机器学习来学习场景图像与场景颜色之间的关系,Funt等人发表了。在1996年。具体来说,他们研究了神经网络是否可以学习这种关系。在过去的30年中,我们见证了机器学习方面的一系列出色的进步,尤其是基于人工神经网络的深度学习方法。在本文中,我们想通过Funt等人更新该方法。包括最新的技术来培训深层神经网络。标准数据集的实验结果表明,更新版本如何将照明估计中的角误差提高几乎51%,而其原始配方,甚至胜过最近的照明估计方法。
新生儿成熟度:超声检查结果 早产儿 足月儿 室性脑出血 I 级 3(7.5%) 0(0.0)% 室性脑出血 III 级 1(2.5%) 0(0.0)% 硬膜下出血 0(0.0)% 1(2.5%) 脑内血肿 0(0.0)% 1(2.5%) PVL 1(2.5%) 0(0.0)% HIE 0(0.0)% 10(25%) 脑积水 0(0.0)% 8(20%) 先天性病变 0(0.0)% 5(12.5%)
变色已被确定为更换假牙的主要临床原因之一 (15)。因此,本实验室研究的目的是评估漱口水对采用不同表面处理的可压锂二硅酸盐玻璃陶瓷颜色稳定性的影响。零假设指出表面处理和漱口水浸泡不会影响可压锂二硅酸盐玻璃陶瓷的颜色稳定性。材料与方法使用统计软件程序 (G*Power 3.0.10;杜塞尔多夫海因里希海涅大学) 进行功效分析。样本量是根据假设置信水平 = 95% 和研究功效 = 80% 来估算的。根据 Derafshi 等人的研究,与锂二硅酸盐玻璃陶瓷相当的 VMK 95 长石陶瓷的平均 ΔE 在 CHX 中浸泡时为 1.15,在 LST 中浸泡时为 0.90 (8)。根据平均值的比较,并使用最高标准差来确保研究能力,计算每个亚组的样本量为七个。
大多数LED处理都可以支持多种颜色空间,但这并不一定意味着LED面板可以支持100%的颜色空间初选。在下面的示例中,Helios支持Rec。2020,但面板本身无法重现REC中的所有颜色。2020。此颜色覆盖范围由LED组件功能确定。颜色覆盖范围更好地表达了屏幕的功能,因为它代表了设备的颜色范围和REC之间重叠的百分比。2020标准。以下示例来自覆盖95%REC的设备。2020可以保证能够再现95%的REC。2020彩色域。如果您仔细观察绿色区域,您会发现这是面板在覆盖范围内最困难的区域。
摘要:我们提出了一种由二氧化钛 (TiO 2 ) 亚波长光栅制成的双谐振纳米结构,以提高 Cd x Zn 1 − x Se y S 1 − y 胶体量子点 (QDs) 在用 ∼ 460 nm 的蓝光激发时发射波长为 ∼ 530 nm 的颜色下转换效率。通过光栅谐振和波导模式的混合,可以在 QD 层内创建大的模式体积,从而导致大的吸收和发射增强。特别是,我们实现了偏振光发射,在特定角度方向上最大光致发光增强约 140 倍,在收集物镜的 0.55 数值孔径 (NA) 内总增强约 34 倍。增强包括吸收、Purcell 和外耦合增强。我们实现了绿色 QDs 的总吸收率为 35%,颜色转换层非常薄,约为 ∼ 400 nm。这项工作为设计用于微型 LED 显示器、探测器或光伏应用中的吸收/荧光增强的大体积腔体提供了指导。关键词:导模共振、二氧化钛、介电纳米天线、颜色转换、胶体量子点、微型 LED 显示器