11:00 - 11:05am Welcome from Subcommittee Co-leads (John Farrar, Claudia Campbell) 11:05 - 11:15 am Introductory Remarks (Rob Gereau, Kathleen Sluka) 11:15 - 11:40 am Lived Experience Presentations (Joletta Belton, David White) 11:40 - 12:00 pm Scientific Presentation 1 : Enhancing Care Delivery (Meryl Alappattu, Katie Butera) 12:00 - 12:20 pm Scientific Presentation 2: Personalized Medicine (Fenan Rassu, Renee Manworren) 12:20 - 12:40 pm Scientific Presentation 3: Prevention (Jennifer Rabbitts, John Farrar) 12:40 - 1:00 pm Break 1:00 - 1:20 pm Scientific Presentation 4: Treatment Combinations (Jennifer Gewandter) 1:20 - 1:40 PM科学演讲5:交叉削减价值(Adam Hirsh)1:40-2:10 pm关于科学演示的讨论(共同领导者和小组委员会成员)2:10-2:40 PM小组委员会小组讨论兴趣的领域讨论优先主题的讨论,讨论2:40-2:40-2:55 PM综合3:55 pmnnment 3:55 pmnn
尽管通过结合多种可再生能源 (RES) 实现互补是增加 RES 份额的重要方法,但在支持能源转型的政策处方中,它往往被忽视。互补可以由多个参与者实施,但很少有人关注哪些参与者参与以及他们的角色。进行了系统回顾,概述了关于多种 RES 组合和多个相关参与者参与这一主题的学术文献现状。样本包括 78 篇文章,使用一系列方法来分析风能、太阳能、生物能源、水力、地热能和海洋能的不同组合,以及传统、新能源和支持能源参与者的组合。研究包括情境化(特定位置)基于代理的分析、技术经济、经济、商业模式和定性分析,以及非情境化评论、基于代理的分析和优化模型。全球范围内,不同学科在不同背景下、在各种地理范围内研究多参与者互补性。大多数研究都集中在太阳风能上,尽管在情境化研究中发现了更多样化的 RES 组合。新参与者通常与传统系统参与者一起参与。需要更多地关注支持参与者。研究结果强调,除了结合多种 RES 的技术优势之外,还需要进一步研究,以探索各种参与者的作用。这可以通过在研究中纳入更多背景来实现,例如,使用大量现有的数据和研究,并纳入更大范围的 RES 组合,并纳入更多相关参与者的观点。
尽管 KRAS G12C 抑制剂已证明 KRAS 是癌症的“可用药”靶点,但由于原发性和获得性耐药机制,KRAS G12C 抑制剂单一疗法的临床疗效有限。临床试验中已研究了 KRAS G12C 抑制剂与其他靶向疗法(如 RTK、SHP2 和 MEK 抑制剂)的多种组合以克服耐药性。它们已显示出良好的疗效,尤其是通过将 KRAS G12C 和 EGFR 抑制剂结合起来治疗 KRAS G12C 突变的结肠直肠癌。许多关于 KRAS G12C 抑制剂与其他靶向疗法(如 SOS1、ERK、CDK4/6 和野生型 RAS)的组合的临床试验正在进行中。此外,临床前数据表明 KRAS G12C 与 YAP/TAZ-TEAD 抑制剂、FAK 抑制剂和法呢基转移酶抑制剂的组合有其他有前景的疗效。 KRAS G12C 抑制剂与免疫疗法和化疗的联合应用也已开始研究,并已报告了初步结果。最近,不仅限于 KRAS G12C 的 KRAS 靶向疗法正在开发中,这可能会拓宽 KRAS 突变癌症的治疗前景。合理地将 KRAS 抑制剂与其他疗法联合使用可能会在未来治疗 KRAS 突变实体瘤方面发挥重要作用。
摘要:已证实重新利用的药物在体外可成功治疗高级别胶质瘤;然而,由于体外模型不能真实反映临床情况,因此其临床成功率有限。在本研究中,我们使用了两种不同的患者来源的肿瘤碎片(肿瘤核心 (TC) 和肿瘤边缘 (TM))来生成异质性、临床相关的体外模型,以评估重新利用的药物(伊立替康、匹伐他汀、双硫仑、葡萄糖酸铜、卡托普利、塞来昔布、伊曲康唑和噻氯匹定)组合是否可以成功治疗高级别胶质瘤,每种药物都针对不同的生长促进途径。为了确保我们数据的临床相关性,我们使用了来自 11 位不同患者的 TC 和 TM 样本。我们的数据表明,在 100 µ m 或更低的浓度下,所有药物组合的 LogIC 50 值均低于替莫唑胺,其中一种组合在治疗 6 天后使 5 个 TM 样本的细胞存活率降至 4% 以下,几乎根除了癌症。替莫唑胺在 14 天的测定中无法阻止肿瘤生长,而组合 1 可以阻止肿瘤生长,组合 2、3 和 4 在较高剂量下减缓了肿瘤生长。为了验证细胞毒性数据,我们使用了两种不同的测定方法,终点 MTT 和实时 IncuCyte 寿命分析,以评估组合对患者 3 的 TC 片段的细胞毒性,两种测定中的细胞存活率相当。局部施用针对高级别胶质瘤不同生长促进途径的再利用药物组合,有可能转化为临床治疗高级别胶质瘤的新型治疗策略。
摘要 ◥ 目的:免疫检查点抑制剂 (ICI) 与其他癌症疗法的组合已被批准用于治疗多种适应症的晚期癌症,并且正在进行大量试验以测试新的组合。然而,已获批准的 ICI 组合相对于其组成单一疗法的优越性机制仍然未知。实验设计:我们分析了 13 项 III 期临床试验,这些试验在晚期黑色素瘤和肺癌、乳腺癌、胃癌、肾癌和头颈癌患者中测试了 ICI 相互组合或与其他药物的组合。在相同或紧密匹配的试验队列中测量的各个组成疗法的临床活性用于计算独立药物作用模型下预期的无进展生存期 (PFS) 曲线。为了确定附加或协同功效,通过 Cox 回归将该零模型下的预期 PFS 与观察到的 PFS 进行了比较。
目前在治疗胶质母细胞瘤 (GBM) 患者方面取得的成果还不够,因为存在许多挑战,例如肿瘤异质性、血脑屏障、胶质瘤干细胞、药物外排泵和 DNA 损伤修复机制。药物联合疗法在应对这些挑战方面显示出越来越多的优势。借助纳米载体,可以通过协同组合不同的治疗剂来提高疗效和安全性。在本综述中,我们将讨论 GBM 治疗的主要问题、有或无纳米载体的药物组合的原理以及基于纳米药物的肿瘤靶向和有前景的纳米诊断或治疗中涉及的增强渗透性和保留效应的原理。我们还将总结最新进展并讨论基于纳米载体的联合疗法的临床前景。本文的目的是提供更好的理解和关键考虑因素,以开发新的纳米药物组合和纳米治疗诊断学选项来对抗 GBM。
我们提出了CombOFM,这是一种用于预测临床前研究中药物组合反应的机器学习框架,例如基于细胞系或患者衍生细胞的临床前研究。Combofm通过高阶张量建模细胞上下文特异性药物的相互作用,并有效地使用强大的分解机来学习张量的潜在因子。该方法使组合能够在预测迄今未经测试的细胞中新组合的响应时利用对类似药物和细胞进行的先前经验的信息;因此,尽管人口稠密的数据张量,它仍可以实现高度准确的预测。我们使用癌细胞系药物筛查的数据在各种预测场景中表现出了CombOFM的高预测性能。随后对一组先前未经测试的药物组合的实验验证进一步提出了CombOFM的实际且可靠的适用性。例如,我们确定了淋巴瘤细胞中的变性淋巴瘤激酶(ALK)抑制剂crizotinib和抑制剂bortezomib之间的新型协同作用。总体而言,我们的结果表明,组合提供了一种有效的手段,用于系统的药物组合预筛查以支持精度肿瘤应用。
S03CA | 皮质类固醇和抗感染药物的复方药 S02CA | 皮质类固醇和抗感染药物的复方药 S | 感觉器官 R06AD | 吩噻嗪衍生物 R05FA | 鸦片衍生物和祛痰药 R03DC | 白三烯受体拮抗剂 R03DA | 黄嘌呤 R03CC | 选择性β-2-肾上腺素受体激动剂 R03BB | 抗胆碱能药物 R03BA | 糖皮质激素 R03AL | 肾上腺素能药物与抗胆碱能药物的复方药 R03AK | 吸入性β-肾上腺素能药物和皮质类固醇 R03AC | 选择性β-2-肾上腺素能受体激动剂 R02AX | 其他咽喉制剂 R01AD | 皮质类固醇 R | 呼吸系统 P02CA | 苯并咪唑衍生物 P | 抗寄生虫产品 N07BB |用于治疗酒精依赖的药物 N07BA | 用于治疗尼古丁依赖的药物 N07AA | 抗胆碱酯酶药物 N02CX | 其他抗偏头痛药物 N | 神经系统 M03BB | 恶唑、噻嗪和三嗪衍生物 M03BA | 氨基甲酸酯 M01AX | 其他非甾体抗炎和抗风湿药 M01AE | 丙酸衍生物 M01AB | 乙酸衍生物和相关物质 M | 肌肉骨骼系统 L01AA | 氮芥类似物 L | 抗肿瘤和免疫调节剂 J02AC | 三唑衍生物 J01FA | 大环内酯类 J01CR | 青霉素组合,包括β内酰胺酶抑制剂 J01CE | 对β内酰胺酶敏感的青霉素 J01AA | 四环素类 J |全身用抗感染药 H02AB | 糖皮质激素 H | 全身激素 G03FB | 孕激素和雌激素,序贯制剂 G03FA | 孕激素和雌激素,固定组合 G03DC | 雌二醇衍生物 G03DA | 孕烯(4)衍生物 G03CX | 其他雌激素 G03CB | 合成雌激素,普通 G03AC | 孕激素 G03AA | 孕激素和雌激素,固定组合 G01AF | 咪唑衍生物 G | 生殖泌尿系统和性激素 D10BA | 用于治疗痤疮的类视黄酸 D07CC | 皮质类固醇,强效,与抗生素复方 D07CB | 皮质类固醇,中效,与抗生素复方 D07CA | 皮质类固醇,弱效,与抗生素复方 D07BC |强效皮质类固醇,与防腐剂复方 D07BB | 中效皮质类固醇,与防腐剂复方 D07AD | 强效皮质类固醇(IV 类) D01AC | 咪唑和三唑衍生物 D01AA | 抗生素 D | 皮肤病学药物 C08DB | 苯并噻嗪类衍生物 C07CB | 选择性β受体阻滞剂和其他利尿剂 C07BB | 选择性β受体阻滞剂和噻嗪类 C07AB | β受体阻滞剂 C07AA | β受体阻滞剂,非选择性 C05AA | 皮质类固醇 C03EA | 低限利尿剂和保钾剂 C03DA | 醛固酮拮抗剂 C03CB | 磺胺类和钾复方药 C03CA | 袢利尿剂 C03AB | 噻嗪类和钾 C01AA | 洋地黄苷 C | 心血管系统 B02BA | 维生素 K B01AF | 直接 Xa 因子抑制剂 B01AA | 维生素 K 拮抗剂 B | 血液和造血器官 A12BA | 钾 A07AC | 咪唑衍生物 A02BC | 质子泵抑制剂 A02BA | H2 受体拮抗剂 A01AD | 其他局部口服治疗药物 A01AB | 用于局部口服治疗的抗感染药和防腐药 A | 消化系统
本封面上显示的美国海岸警卫队印章是总统于 1957 年 5 月 6 日通过行政命令 10707 批准的。经指挥官批准,美国海岸警卫队官方印章的复制品可用于印花、信头信纸、手册和小册子封面以及其他地方。出于上述目的,允许以五种颜色组合或任何两种对比色组合进行复制。