观察到儿童化学套装中的成分可以创造出比宇宙中原子更多的不同组合。基于这一见解,Weitzman (1998) 构建了一个增长模型,其中新想法是旧想法的组合。然而,由于组合增长如此之快,他发现增长受到我们处理爆炸式增长的想法数量的限制,而组合学在确定增长率方面基本上没有发挥任何正式作用:有如此多的潜在组合,以至于数量不是限制因素。组合过程没有发挥更核心的作用,这有点令人失望和困惑。另一篇文献强调了指数增长和帕累托分布之间的联系。具体来说,Kortum (1997) 引入了一种建模经济增长的新方法,并认为帕累托分布至关重要:如果生产率是在从某个分布中抽取的多个样本中取的最大值(只使用最好的想法),那么在他的设置中,生产率的指数增长要求抽取的次数呈指数增长,并且所抽取的分布是帕累托分布,至少在上尾是这样。有趣的是,似乎需要如此强的分布假设。也许提取想法的底层分布是帕累托分布,但为什么会这样呢?毕竟,在经济学的许多其他应用中,帕累托分布是推导出来的,而不是假设的。例如,Gabaix (1999)、Luttmer (2007) 以及 Jones 和 Kim (2018) 强调,城市规模、公司就业、收入和财富都具有帕累托分布的特征。但是,该文献显示了这些帕累托分布是如何作为内生结果出现的。这就引发了一个问题:帕累托分布在 Kortum 方法中是否真的是必要的。而且,Romer 和 Weitzman 认为组合学应该是理解增长的核心,那么他们的观点又怎么了?本文结合 Kortum (1997) 和 Weitzman (1998) 的观点来回答这些问题。假设创意是现有成分的组合,就像菜谱一样。每个菜谱的生产率都是从概率分布中得出的。与 Romer 和 Weitzman 的观点一样,我们可以从现有成分中创造出的组合数量大到本质上是无限的,而我们受限于处理这些组合的能力。令 N t 表示截至日期 t 已经评估过的菜谱成分数量。换句话说,我们的“食谱”包括了所有可能由 N t 种原料组成的食谱:如果每种原料都可以加入或排除在食谱之外,那么食谱中总共有 2 N t 种食谱。最后,研究包括将新食谱添加到食谱中,即评估它们并了解它们的生产力。特别是,假设研究人员在食谱中添加新配料,并了解其生产率,使得 N t 呈指数增长。我们称一个包含 2 N t 个食谱的设置
所有智能都是集体智能,因为它是由必须与系统级目标保持一致的部分组成的。因此,了解通过对齐的部分促进或限制问题空间导航的动态将影响生命科学和工程学的许多领域。为此,考虑一个位于平面图顶点上的系统,其成对交互由图的边缘规定。这样的系统有时可以表现出长程有序,将宏观行为的一个阶段与另一个阶段区分开来。在相互作用系统的网络中,我们可以将自发排序视为一种自组织形式,模拟神经和基础认知形式。在这里,我们讨论了有序相存在的图拓扑必要条件,着眼于寻找具有局部相互作用的系统维持有序目标状态的能力的限制。通过研究三个模型系统(Potts 模型、自回归模型和分层网络)中域壁形成下自由能的缩放,我们展示了图上相互作用的组合如何阻止或允许自发排序。作为一个应用,我们能够分析为什么像生物学中普遍存在的多尺度系统能够组织成复杂的模式,而基本的语言模型则受到长序列输出的挑战。
101 数学 1010 数学 101001 代数 101002 分析 101003 应用几何 101031 近似理论 101004 生物数学 101005 计算机代数 101006 微分几何 101027 动态系统 101007 金融数学 101032 泛函分析 101008 复分析 101009 几何 101010 数学史 101011 图论 101012 组合学 101013 数理逻辑 101028数学建模 101029 数理统计 101014 数值数学 101015 运筹学 101016 最优化 101017 博弈论 101018 统计学 101019 随机数学 101020 技术数学 101021 理论控制论 101022 拓扑学 101023 精算数学 101024 概率论 101025 数论 101026 时间序列分析 101030 可靠性理论
关系:𝐻𝜎 𝑥 𝐻 † = 𝜎 𝑧 和 𝐻𝜎 𝑦 𝐻 † = 𝜎 𝑥 ,这意味着 𝐻 𝑖 ∈𝒞 𝑛 。也就是说,n 量子比特 QFT 总是可以在 n 重 Clifford 群中找到 [3]。iii. 通过 (2) 的变换,我们可以将 𝒞 1 解释为二维希尔伯特空间中状态向量的一组旋转,这些旋转会置换 ±𝑥、±𝑦、±𝑧 轴。考虑首先固定 𝑥 轴。然后我们仍然可以进行旋转,并有四个其他位置可以放置 𝑦 或 𝑧。因此,𝒞 1 可以被认为是同构于立方体的旋转对称群 [4]。通过群论的范围来处理量子纠错,我们能够做出的观察结果与矢量微积分方法的结果一致,并且我们能够指出与几何组合学的可能关系,如上文第 (iii) 点的情况。事实上,群论在我们刚刚讨论的稳定器形式主义的发展中被证明是不可或缺的,而且它似乎与量子纠错领域目前正在研究的许多其他错误模型和稳定器代码有很大关系。参考文献 [1] Planat, Michel, and Philippe Jorrand. “On Group Theory for Quantum Gates and Quantum
物理科学与工程 PE1 数学:数学的所有领域,包括纯数学和应用数学,以及计算机科学的数学基础、数学物理和统计学 PE1_1 逻辑与基础 PE1_2 代数 PE1_3 数论 PE1_4 代数和复几何 PE1_5 几何 PE1_6 拓扑 PE1_7 李群、李代数 PE1_8 分析 PE1_9 算子代数和泛函分析 PE1_10 ODE 和动力系统 PE1_11 偏微分方程的理论方面 PE1_12 数学物理 PE1_13 概率 PE1_14 统计学 PE1_15 离散数学和组合数学 PE1_16 计算机科学的数学方面 PE1_17 数值分析 PE1_18 科学计算和数据处理 PE1_19 控制理论与优化 PE1_20 数学在科学中的应用 PE1_21 数学在工业和社会生活中的应用 PE2物质的基本成分:粒子、核、等离子体、原子、分子、气体和光学物理学 PE2_1 基本相互作用和场 PE2_2 粒子物理学 PE2_3 核物理学 PE2_4 核天体物理学 PE2_5 气体和等离子体物理学 PE2_6 电磁学 PE2_7 原子、分子物理学 PE2_8 超冷原子和分子 PE2_9 光学、非线性光学和纳米光学
新开设的课程: 课程名称:算子理论和算子代数 课程:博士(数学) 讲师:Harsh Trivedi 博士和 Ratan Giri 博士 学习目标:这是一门入门课程。它可应用于数学研究的几个领域,包括微分方程、量子统计力学、量子信息论和数学物理。它主要面向希望在算子理论、算子代数和相关领域进行研究的学生。 课程名称:李代数 课程:博士(数学) 讲师:Ashish Mishra 博士 学习目标:本课程介绍李代数理论。我们的目标是研究有限维复半单李代数的结构及其表示理论。李代数是一个重要的研究领域,在数学的各个领域有着广泛的应用,例如微分几何、组合学、数论、微分方程,以及物理学的许多领域,如量子力学和粒子物理学。为了给学生提供学习李代数高级主题的背景知识,本课程将从模块理论的介绍开始,特别介绍模块的张量积和张量代数的主题。本课程主要面向希望在李代数和相关领域进行研究的学生。
摘要。我们探索了Castellan,Clairambault和Winskel的薄薄游戏之间的联系,以及由Laird,Manzonetto,McCusker和Pagani研究的线性逻辑的加权关系模型。更确切地说,我们表明,从前者到后者有一个解释的“崩溃”函数。在对象上,函子为每个游戏定义了一组可能的执行状态。定义对形态的作用更加微妙,这是本文的主要贡献。鉴于策略和执行状态,我们的函子需要在战略中计算该状态的证人。薄薄的并发游戏中的策略明确地描述了非线性行为,因此总的来说,每个证人都存在于许多对称副本中。挑战是定义证人的正确概念,在与加权关系模型匹配的同时考虑了这个无穷大。了解证人的构成方式特别微妙,需要深入研究证人及其对称性的组合。以其基本形式,该函子连接了薄的并发游戏和由n∪{ +∞}加权的关系模型。我们还将考虑一个广义设置,其中两个模型都由任意连续半段的元素加权;这涵盖了概率案件。目击者现在还从半段中带有一个价值,而我们的解释崩溃函数则扩展到此设置。
整数晶格Z n是一种简单而基本的数学结构,在该结构中,数量理论,代数,组合和其他数学分支相互作用[5,18]。例如,通过计算三角形区域中的晶格点来形成爱森斯坦的二次互惠证明[12]。Minkowski启动了“数量的几何”,他的凸面定理已用于数字理论中的几个定理[15]。后来,西格尔(Siegel)和莫德尔(Mordell)在椭圆曲线上的晶格或理性点进行了深入的结果[27]。目前,包括Z N以外的其他数学(包括Z N以外的其他数学)吸引了对应用数学,工程学和自然科学领域的兴趣,例如密码学[16],计算机图形[23]和材料科学[14]。晶格多边形和多面体的数学已经在许多方面开发。在这里,晶格多边形和多面体定义为多边形和多边形,其顶点分别是晶格点。最著名的结果之一是Pick的定理[1],它使用内部和边界上的晶格点计算R 2中的晶格多边形面积。该定理用于使用Farey序列[7]证明Minkowski的定理,并且有时用作数学教育中的教材[10]。各种扩展
量子信息及其与组合学的相互作用。本书部分是关于这些问题的进度报告。对我们来说,最大的惊喜是代数图理论的工具在多大程度上被证明是有用的。因此,我们对此比严格必要的更详细。其中有些是标准的,有些是旧的stu效应,有些是新材料(例如,可控性,强烈的既定性顶点),已开发用于处理量子步行。,但组合并不是一切:我们还会遇到谎言组,数字理论的各种范围以及几乎是周期性的功能。(因此,第二个惊喜是与我们的主题纠结的不同数学领域的数量。)我们不在这里处理离散的量子步行(请参阅[?])。我们不处理量子算法或量子计算,也不处理有关复杂性,误差校正,非本地游戏和量子电路模型的问题。我们讨论了一些相关的物理学。我们专注于在数学上有趣且具有一定的意义的问题,因为这种重叠通常是结果富有成果的标志。我们对许多人的这些笔记有有用的评论,包括戴夫·维特·莫里斯(Dave Witte Morris),蒂诺·塔蒙(Tino Tamon),萨莎·朱里什(SashaJurišic)以及他的研讨会成员,亚历克西斯·亨特(Alexis Hunt),戴维·费德(David Feder),亨利·刘(David Feder),亨利·刘(Henry Liu),Harmony Zhan,Nicholas Lai,Xiaohong Zhang Zhang,Sof a arnadottir a arnadottir,qiuting chen chen。。。。
量子信息及其与组合学的相互作用。本书在某种程度上是这些问题的进展报告。对我们来说,最大的惊喜是代数图论工具的实用程度。因此,我们对此的处理比严格必要的更详细。其中一些是标准的,一些是旧东西,一些是为处理量子游动而开发的新材料(例如,可控性,强同谱顶点)。但组合学并不是万能的:我们还会遇到李群、各种数论和几乎周期函数。(因此,第二个惊喜是与我们的主题纠缠在一起的不同数学领域的数量。)我们在这里不处理离散量子游动(参见 [ ? ])。我们不处理量子算法或量子计算,也不处理有关复杂性、误差校正、非局部游戏和量子电路模型的问题。我们讨论了一些相关的物理学。我们重点关注那些在数学上有趣且具有一定物理意义的问题,因为这种重叠往往预示着成果丰硕。许多人对这些笔记提出了有益的评论,包括 Dave Witte Morris、Tino Tamon、Sasha Jurišic 及其研讨会成员 Alexis Hunt、David Feder、Henry Liu、Harmony Zhan、Nicholas Lai、Xiaohong Zhang、Soffia Arnadottir、Qiuting Chen……
