32 PONS系列WDM EDFA组合仪,高功率ERBIUM掺杂纤维放大器,它是光学发射器系统中一个网中三个净的核心设备,输入8端口PON+1 PORTS CATV和输出8端口合并结合1550/1490/1310nm。组合的光输出功率:15dBm。插件双电源,实现了OLT和CATV 1550NM光学单一组合和放大的功能,具有高成本性能值。(Erbium掺杂纤维放大器)是光学放大器中的代表性。由于EDFA的波长为1550nm,因此与低损坏的纤维带一致,其技术相对成熟,因此广泛使用。Erbium-doped fiber is the core components of the EDFA, it makes quartz optical fiber as matrix material, and incorporate a certain proportion of rare earth element erbium ions(Er3 +)in the core of a fiber.When certain amount of pump light is injected into the erbium-doped fiber, Er3 + have been excited from the low-energy level to the high energy level, due to Er3 + has a very short高能水平上的寿命,并以非辐射式的形式不久以更高的水平过渡,并形成了该能级和低能水平之间的种群反转分布。由于这两个能级之间的能量完全等于1550nm的光子能量,因此只能发生1550nm光的刺激发射,我们只能扩大1550nm的光学信号。
摘要 - 在这项工作中,我们开发了一种便携式光纤传感器,其特征在于其对电磁干扰(EMI)的稳健免疫力(EMI),卓越灵敏度和对磁场的实时监测功能。该传感器在测量增加和减少磁场时表现出显着的准确性和稳定性。为了提高传感器的性能,我们使用组合制造系统(CMS)设计,模拟和制造了锥形直径为40 µm的锥形纤维结构。此外,我们采用了一种称为磁石墨烯(MGO)的2-D材料来固定锥形光纤传感器的传感区域。该传感器背后的关键原理在于经历磁场时MGO的折射率(RI)变化,从而导致传输光谱的波长移动。通过严格的实验,我们彻底评估了传感器在检测增加和减少磁场时的测量范围,灵敏度和准确性。因此,我们确定光纤磁场传感器的灵敏度为0.9和1.6 pm/mt,用于增加5-600 mt的宽测量范围内的磁场。该传感器在各种应用中都有很大的希望,包括医疗测试和科学测量,这是由于其出色的精度,紧凑的大小和无创测量能力。此外,其稳定性和非接触式测量特征将其定位为可控核融合,太空探索和地球物理研究的有价值工具。
AC 交流电 ACD 交流断路器 AC-FT 英亩英尺 ADJ 可调 AHJ 具有管辖权的机构 ALT 交流电 AL 铝 APPROX 近似 AUX 辅助 AWG 美国线规 AZ 方位角 BESS 建筑储能系统 BOL 使用寿命开始 BIL 基本绝缘水平 BLDG 建筑 BOC 电池背面 C 摄氏度 C/L 中心线 CB 组合箱 CLR 清晰 CN 同心中性 CONT 连续 CONFIG 配置 CT 电流变压器 CU 铜 DAS 数据采集系统 DC 直流 DIA 直径 DISC 断路器 DWG 图纸 (E) 现有 EGC设备接地导体 EMT 电气金属管 EOL 寿命终止 EOR 记录工程师 EQ 相等 F 华氏度 FCI 故障电流指示器 FO 光纤 FT 固定倾斜 GALV 镀锌 GEC 接地电极导体 GFDI 接地故障检测器中断器 GHI 整体水平辐照度 GOAB 联动空气断路器 GND 接地 GSU 发电机升压变压器 HV 高压 ID 内径 INV 逆变器 IMC 中间金属导管 IMP 阻抗 ISU 逆变器升压变压器 JB 接线盒 kV 千伏,千伏kW 千瓦,千瓦 LBOR 负荷断路器 油浸旋转 LFNC 液密柔性非金属导管 LV 低压 MCB 主断路器 MCOV 最大连续工作电压 MIN 最小 MET 气象站 MOV 金属氧化物压敏电阻 MV 中压 MVA 兆伏安,兆伏安 MW 兆瓦,兆瓦 NEC 国家电气规范 NEG 负极 NTRL 中性线 OAE 或认可相等 OC 中心 OCPD 过流保护装置 OCTE 户外核心电信外壳 OD 外径 OH 架空OTDR 光时域反射仪 PCS 功率转换系统 PH/P 相位 POA 阵列平面 POCC 公共耦合点 POI 互连点 POS 正极 PRCLF 部分范围电流限制 PT 电压变压器 PV 光伏 PVC 聚氯乙烯 RFI 信息请求 RMC 刚性金属导管 SAT 单轴跟踪 SCADA 监控和数据采集 SCB 串式组合器箱 SCH 时间表 SF 平方英尺/英尺 SIM 类似 STC 标准测试条件 TBD 待定 TOF 基础顶部 TW 测试井 TYP 典型 UGPB 地下拉力箱体 (UON) 除非另有说明 UPS 不间断电源 V 伏,伏特 VA 伏安,伏安 VAC 伏特交流电 VDC 伏特直流电 VIF 现场验证 WP 防风雨 WS 气象站 XFMR 变压器
最快的周期时间基于标准融合剪接,光纤锥度和裂解周期时间平均。在<0.01度分辨率的前对齐,光纤与光纤对准,端盖剪接,锥形玻璃剪接和光纤组合仪的<0.01度分辨率对齐,光纤与光纤排列,光纤纤维对齐,光纤上的自动对齐。使用5MP视觉系统的正交视图,具有远伦镜头,可提供4.2毫米宽x 3.5毫米高的视野,每秒最多20帧。实时过程通过完整分辨率的视频成像对熔融光纤玻璃进行全面视频成像,而不会过度暴露或过度暴露。可选的原位切肉刀可支持从20UM到500UM的光纤直径。能够将直径从125UM到2.5mm的融合剪接和缩小光纤逐渐变细。锥度功能需要锥度软件包。能够融合剪接光纤的直径不同至125um至2.5mm。压电驱动的弯曲阶段和软件包,提供130μm无振动的Z轴运动,并具有0.25μm理论分辨率。扫描软件能够在融合接头或光纤锥度之前或之后扫描光纤的直径。将自动捕获Fusion Splice图像在融合剪接之前,之中和之后以及每个接头的剪接数据和程序文件。“热成像”可实时进行光纤融合处理期间的实时观看。
摘要 本文介绍了一种非平衡马赫-曾德干涉仪 (MZI) 固有的干涉特性,该干涉仪通过精密制造技术在绝缘体上硅平台上实现。研究深入探讨了自由光谱范围 (FSR) 与非平衡 MZI 各种长度之间的复杂关系。值得注意的是,模拟结果与实验结果的比较显示出了惊人的一致性。 关键词:马赫-曾德干涉仪、光子学、绝缘体上硅、波导 1. 简介 硅光子器件因其吸引人的特性而越来越受欢迎。小尺寸、大折射率对比度和 CMOS 兼容性是硅光子器件的特性之一,这些特性使其成为电信、生物医学等多个行业的首选器件[1]。马赫-曾德干涉仪 (MZI) 是最广泛使用的硅光子器件组件之一。在硅平台上实现的马赫-曾德尔干涉仪是各种应用的关键元件,从电信(用于光子波导开关和光子调制器)到传感和信号处理 [2]、[3]、[4]。MZI 的实用性源于其干涉特性,这是通过在 MZI 的两个臂之间产生相对相移来实现的。这种相移可以通过使用移相器或使 MZI 的两个臂的光路长度不相等来实现。MZI 的两个臂不相等的 MZI 配置称为不平衡 MZI。在本文中,我们展示了一种不平衡 MZI 设计,我们对其进行了建模、模拟和随后的制造。我们研究了几种不平衡 MZI 设计,并分析了这些设备的模拟和实验传输特性。我们阐明了波导建模的过程,并进行了分析以补偿制造变化,并详细介绍了一些数据分析。 2. 材料与方法 2.1 理论 马赫-曾德干涉仪 (MZI) 包括一个分束器和一个光束组合器,它们通过一对波导相互连接,如图 1 所示。MZI 配置包括分束器将波导输入端 (E i ) 的入射光分成波导的臂或分支。随后,光在输出端重新组合成光束
会议 1:SID 年度业务会议 2024 年 5 月 14 日星期二 / 上午 8:00 – 8:20 / 220A 房间 会议 2:开幕致辞/主旨演讲 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 / 220A 房间 主席:Hyun-Jae Kim,延世大学 2.1:主旨演讲 1:量子点中的量子魔力:合成开启纳米探索之旅 Moungi Bawendi,麻省理工学院教授 2.2:主旨演讲 2:新现实:AR 和 MR 中显示的机遇和挑战 Jason Hartlove,Meta 显示和光学副总裁 2.3:主旨演讲 3:超越像素,创新显示引领未来 TCL 首席执行官赵军 会议 3:AR 光合路器 (AR/VR/MR) 2024 年 5 月 14 日星期二 / 上午 8:20 – 10:20 2024 年 11 月 14 日 / 上午 11:10 - 下午 12:50 / 房间 220B 主席:Robert Visser 博士,应用材料公司 联合主席:Michael Wittek,默克公司 3.1:特邀论文:衍射波导组合器中的现实与模拟 Guillaume Genoud,Dispelix Oy,芬兰埃斯波 3.2:特邀论文:AR 光学的当前技术和发展 Jee Myung Kim,LetinAR,韩国安养 3.3:变形-XR:用于高效、宽视场近眼显示的成像波导技术 Graham Woodgate,Rain Technology Research Ltd.,英国牛津 3.4:具有曲面波导的时尚外形近眼显示器 Jaeyeol Ryu,三星研究中心,韩国首尔 3.5:杰出论文:用于 AR 显示的全彩色、宽视场单层波导 Qian杨,中佛罗里达大学,美国佛罗里达州奥兰多 第四场:量子点诺贝尔奖(发射、微型 LED 和量子点显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/220C 室 主席:意法半导体 Jonathan Steckel 博士 联合主席:NS Nanotech 的 Seth Coe-Sullivan 4.1:特邀论文:利用胶体纳米晶体合成和自组装来创建模块化光学和光电材料和设备 Chris Murray,宾夕法尼亚大学,美国宾夕法尼亚州费城 4.2:特邀论文:量子点:更亮?苏黎世联邦理工学院,瑞士苏黎世 4.3:特邀论文:QD-LED 发展概况:现状及未来前景 Yeo-Geon Yoon,三星显示有限公司,韩国龙仁 第 5 场:集成 EMR 手写笔显示器(交互式显示器和系统/传感器集成和多功能显示器) 2024 年 5 月 14 日星期二/上午 11:10 - 下午 12:10/房间 LL21CD 主席:Hiroshi Haga,天马日本有限公司 联合主席:Derek Solven,Synaptics 5.1:阵列基板中集成天线线圈的 Incell 电磁共振触摸 LCD Chuan Shuai,TCL 华星光电科技股份有限公司,中国武汉 5.2:柔性 OLED 显示屏的电容式触摸和电磁传感器集成设计 Lihua Wang,合肥维信诺科技有限公司,中国合肥
