• 店内有充足的自来水 • 有洗手液和纸巾的洗手池 • 妥善存放用品 • 提供洗手液 • 业主允许进入 • 所有业主、经理、店面租户和商店均持有适当的许可证。州外许可证在罗德岛无效 • 张贴专业许可证 • 沙龙内禁止携带动物,听力、视力或医疗障碍人士可以携带的持牌服务犬除外 • 有盖的容器用于存放所有垃圾和脏床单 • 店内没有粗糙的剃须刀、多用途剃须刀或不卫生的工具 • 禁止戴乳胶手套 • 所有机械和电气设备均得到妥善维护 • 符合消防安全法规、建筑法规、分区法律和 OSHA 标准 • 可清洗的地板覆盖物。无地毯 • 卫生间设施正常运行 • 床单在 140 度水中浸泡至少 15 分钟 • 存放工具以防止污染 • 禁止误导公众的广告 • 除非有 RI 纹身店执照,否则场所内不得使用永久性化妆品 • 遵守禁止电解的规定 • 头枕用干净的毛巾覆盖 • 所有产品均不含甲基丙烯酸甲酯 (MMA) • 一次性物品的正确使用/储存 • 用过的锐器必须放置在安全的锐器容器中并妥善处理 • 梳子、刷子、镊子、修指甲工具、剪刀工具等必须用 EPA 批准的消毒剂(即 Barbicide)进行适当清洁 • 客户颈部的清洁保护 • 业务运营期间随时有注册经理在场 • 每位客户之间洗手
量子技术让我们能够利用量子力学定律来完成通信、计算、模拟、传感和计量等任务。随着第二次量子革命的进行,我们期望看到第一批新型量子设备凭借其优越的性能取代传统设备。人们强烈要求将量子技术从基础研究转变为可广泛使用的标准。量子通信通过量子密钥分发保证了绝对安全的未来;量子模拟器和计算机可以在几秒钟内完成计算,而世界上最强大的超级计算机则需要几十年的时间;量子技术使先进的医学成像技术成为可能。还可能会出现我们目前无法预料的进一步应用。全球市场已经意识到量子技术的巨大潜力。作为该领域的先驱,Menlo Systems 为这些新挑战提供了商业解决方案。光子学和量子物理学之间的联系是显而易见的。量子模拟和计算使用冷原子和离子作为量子比特,世界各地的实验室都在此类实验中使用光学频率梳和超稳定激光器。量子通信通常依赖于单光子,这些光子由近红外 (-IR) 光谱范围内精确同步的飞秒激光脉冲产生。量子传感和计量需要频率梳和激光技术具有最高的稳定性和准确性。值得一提的是,光学原子钟正在取代国际单位制 (SI) 中秒的当前定义。
量子技术使我们能够利用量子力学定律来进行诸如通信,计算,计算或传感和计量学等任务。随着第二次量子革命的持续,我们希望看到第一个新颖的量子设备因其出色的性能而取代经典的DECECES。从基础研究到广泛可访问的标准有很大的动力来形成量子技术。量子通讯承诺通过量子密钥分布具有绝对安全性的未来;量子模拟器和计算机可以在几秒钟内执行计算,其中世界上最强大的超级武器需要数十年的时间;量子技术实现了高级的成像技术。可能会出现进一步的申请。全球市场已经意识到了量子技术的巨大潜力。Menlo Systems是该领域的先驱,为这些新型挑战提供了商业解决方案。光子学与量子物理学之间的联系很明显。量子模拟和计算在这些类型的实验中使用冷原子和离子作为Qubits,实验室全球使用光学频率梳子和超稳定激光器。量子通信通常依赖于单个光子,这些光子是在近红外(-IR)光谱范围内精确同步飞秒激光脉冲产生的。量子传感和计量学需要频率梳和激光技术的最高稳定性和准确性。和 - 值得突出显示的应用程序 - 正在替换国际单位系统(SI)中第二个定义的光原子时钟。
计划摘要(摘要在第 3 页) 研讨会第一天:7 月 9 日星期二@量子计算研究所 08.45 - 09.00:欢迎 09.00 - 09.40:Maciej Lewenstein 小组:Pavel Popov 标题:使用量子计算机系统的格点规范理论的量子模拟 09.40 - 10.20:Ray Laflamme 小组:Cristina Rodriquez、Matt Graydon 标题:柏拉图式量子基准测试 10:20 - 10:50:咖啡休息(30 分钟) 10.50 - 11.30:Michel Devoret 小组:Benjamin Brock 标题:超越盈亏平衡的玻色子量子计算机的量子误差校正 11.30 - 12:10:Irfan Siddiqi 小组:Noah Goss、Larry Chen 标题:纠缠超导量子计算机12.10 - 12.50:Barry Sanders 标题:小猫、猫、梳子和指南针:叠加相干态 12.50 - 14.00:午餐休息 (70 分钟) 14.00 - 14.40:Hubert de Guise 标题:d 维幺正的简单因式分解和其他“良好”属性 14.40 - 15.20:Sahel Ashhab 标题:优化高维量子信息控制:(1) 量子三元组控制和 (2) 具有弱非谐量子比特的双量子比特门的速度限制 15.20 - 16.00:Martin Ringbauer 标题:使用囚禁离子量子比特的量子计算和模拟 16.00 - 16.30:咖啡休息 (30 分钟) 16.30 - 17.10:Adrian Lupascu 标题:控制和过程超导量子三元材料的特性分析 17.10 - 17.50:Susanne Yelin 题目:量子化学与量子计算机 18.00 - 20.00 = 海报展示 + 手持食物
双光子频率梳 (BFC) 是用于大规模和高维量子信息和网络系统的有前途的量子源。在这种情况下,单个频率箱的光谱纯度对于实现量子网络协议(如隐形传态和纠缠交换)至关重要。测量组成 BFC 的未预告信号或闲置光子的时间自相关函数是表征其光谱纯度并进而验证双光子状态对网络协议的实用性的关键工具。然而,通过实验可获得的测量 BFC 相关函数的精度通常受到探测器抖动的严重限制。结果,相关函数中的精细时间特征(不仅在量子信息中具有实用价值,而且在量子光学研究中也具有根本意义)丢失了。我们提出了一种通过电光相位调制来规避这一挑战的方案,通过实验证明了集成 40.5 GHz Si 3 N 4 微环产生的 BFC 的时间分辨 Hanbury Brown-Twiss 特性,最高可达 3 × 3 维二四分体希尔伯特空间。通过使电光驱动频率从梳状的自由光谱范围略微失谐,我们的方法利用 Vernier 原理来放大时间特征,否则这些特征会被探测器抖动平均掉。我们在连续波和脉冲泵浦模式下展示了我们的方法,发现与理论高度一致。我们的方法不仅揭示了贡献频率箱的集体统计数据,还揭示了它们的时间形状 - 标准全积分自相关测量中丢失的特征。
光频率梳(OFC)参与了大量应用,例如计量,电信或光谱。在过去的几年中,已经探索了不同的技术。使用电气调制器(EOM),可以生成完全可调的OFC,该OFC通过应用的电气射频(RF)信号的频率设置了光学重复速率。为了实现芯片OFC发电机,Silicon Photonics是一项非常合适的技术,受益于大规模制造设施,并且有可能将电子设备与EOM整合在一起。但是,重复速率低于10 GHz的OFC可能具有挑战性,因为此类间距小于基于光栅的光谱分析仪的典型分辨率。为了克服这个问题,使用了基于异差检测技术的两种替代解决方案来对电气RF域上的OFC进行成像。第一种技术包括在调制器上同时应用两个频率,并观察结果的两个梳子之间的跳动。另一种方法是观察OFC和输入激光器之间的跳动,一旦该输入激光器的频率通过Acousto-Oc-Oc-Octic调制器从OFC的中心移动。基于两种测量技术,已观察到包含超过10条线的OFC,重复速率从100 MHz到15 GHz。它们是使用基于4毫米的硅耗尽耗尽的手动马赫 - Zehnder调制器(MZM)生成的,其波长为1550 nm。
频率梳子具有10-20 GHz的模式间距对于越来越重要的应用至关重要,例如天文光谱仪校准,高速双重击向光谱和低噪声微波生成。虽然电磁调节器和微孔子可以以这种重复速率提供窄带梳子来源,但剩余的挑战是产生具有足够峰值功率的脉冲来启动非线性超脑抗脑电图的一种手段,该脉冲跨越了数百个Terahertz(THZ)(THZ)。在这里,我们使用现成的偏振化放大和非线性纤维组件为此问题提供了简单,坚固且通用的解决方案。使用1550 nm的谐振电频率梳子证明了这种非线性时间压缩和超脑部生成的光纤方法。我们以20 GHz的重复速率显示了如何轻易实现短于60 fs的脉冲。可以将相同的技术应用于10 GHz的皮秒脉冲,以表现出9倍的时间压缩,并实现50 fs脉冲,峰值功率为5.5 kW。这些压缩的脉冲通过多段分散量的异常 - 非线性纤维或tantala波导,可以在传播后跨越超过600 nm的平坦超脑生成。相同的10 GHz源可以很容易地获得八度跨度的光谱,以在分散工程二氮化硅波导中自我引用。这种简单的全纤维方法用于非线性光谱扩展填补了将任何窄带10–20 GHz频率梳子转换为宽带光谱的关键空白,用于从高脉冲率中受益并需要访问单个梳子模式的广泛应用。
量子计算机需要误差校正以实现量子优势。他们还需要校准大量参数,以正确操作Qubits,这可能只有53 QUBITS的Google Sycamore需要几个小时。扩展量子计算需要快速,可扩展和屈曲反馈以实现量子误差校正(QEC)和加速校准。QEC和校准都需要电子设备,以测量,计算和应用最低潜伏期的反馈。使用当今的电子设备必须扩展到数千个Qubits。FPGA是理想的选择,因为它们可以重新编程以满足不同的实验需求,同时达到了非常低的反馈延迟。典型的量子操作实验(图1)涉及在室温下通过数字转换器(DAC)(DACS)和对数字转换器(ADCS)的模拟转换器(ADC)的FPGA网络。用于自旋Qubits,控制信号由两种类型组成。首先,基于纳秒坡道的准静态控制,以调整Qubits的潜在井和耦合以改变其状态。其次,通过I/Q调制控制的Ra-dio频率脉冲,用于测量或基于共振的控制。数字混合用于实现更复杂的控制方案和脉搏工程。完整的数字发电提高了灵活性并减少了噪声源。我们使用直接生成的坡道和频率梳子提出了可扩展的,复杂的信号发生器(CSG),以减少
汽车: Christoph Lütge 1;弗朗西斯卡·波斯勒 2;艾达·华金·阿科斯塔 3;大卫丹克斯 4 ;盖尔·戈特勒 5 ;尼古拉·卢西安·米赫特 6;艾莎·纳西尔 7 岁;银行与金融:Nir Vulkan 8;艾莎·纳西尔 7 岁;弗兰克·麦格罗蒂 9 ;朱莉娅德尔甘巴 10;约翰·库克 11;灯柱 12;保罗·乔里昂 13;拉斐拉·多尼尼 14 岁;能源:Nicolae Lucian Mihet 6;阿夫扎尔·S·西迪圭 15;福斯托·佩德罗·加西亚·马尔克斯 16 岁;罗南肯尼迪 17;塞尔吉奥·萨波纳拉 18;医疗保健:Raja Chatila 19;斯蒂芬科里罗宾逊 20;唐纳德·科姆斯 21;保拉·博丁顿 22 岁;埃尔韦·施奈维斯 23 岁;尤金尼奥·古列尔梅利 24 岁;丹尼范罗伊恩 25;乔斯杜莫提尔 26 岁;莱昂纳多卡利尼 27 岁;保险:Frank McGroarty 9 ;詹维托·兰佐拉 28 岁;尼尔火神 8;保罗·乔里昂 13;帕特里斯查泽兰 29 岁;鲁伊·马努埃尔·梅洛·达席尔瓦·费雷拉 30;蒂尔曼·亨格沃斯 31;泽尼亚·齐乌维卢 32 岁;法律服务业:Burkhard Schafer 33;科妮莉亚·库特勒 34 岁;伊丽莎白·施陶德格 35 岁;尤多西亚·内兰茨 36;雅各布·斯洛瑟 37;杰米·J·贝克 38 岁;米雷耶·希尔德布兰特 39 岁;罗南肯尼迪 17;媒体与技术:乔·皮尔森 40;斯蒂芬科里罗宾逊 20;保拉·博丁顿 22 岁;帕特里斯查泽兰 29 岁;阿芙拉·蔻儿 41 岁;斯蒂芬妮亚米兰 42 岁;冯斯·维贝克 43;科妮莉亚·库特勒 34 岁;尤多西亚·内兰茨 36;伊丽莎白·克罗西克 44;诺伯托安德拉德 45;詹妮·埃尔维利德 46。
目录简介 3 Allsopp, D.N.、Beautement, P.、Bradshaw, J.M.、Durfee, E.H.、Kirton, M.、 5 Knoblock, C.A.、Suri, N.、Tate, A. 和 Thompson, C.W. “联盟代理实验:国际联盟环境中的多代理合作” Bala, J.、Pachowicz, P. 和 Witham, R.A. “通过进化计算和 3-D 可视化支持联盟行动 21 目标运动探索” Barber, K.S.和 Martin, C. “联盟中决策者的自主性” 22 Bevinakoppa, S.、Kumar, D.K.、MacGovern, J.、Narayan, K. 和 Hicks, R. “基于知识的联盟规划和运营在医疗应用中” Desimone, R. 和 Charles, D. “面向情报分析和收集管理的本体论” 26 Doran, J. “基于代理的环境联盟形成建模” 33 Edwards, G.、Kettler, B.、Olin, K. 和 Tsurutani, B. “语义对象网上的代理:联盟行动的信息管理” Fletcher, M. “JACK:构建全息联盟的系统” 49 Fouse, S.、Delgado, R. 和 Beaton, B. “C-CINC21:21 世纪联盟指挥官的指挥与控制” 61世纪:先进概念技术演示 (ACTD) 报告” Hsu, E. “以群体为导向的联盟框架” 62 Jelinek, J. “军事行动的模型预测风险控制” 73 King, G., Heeringa, B., Westbrook, D., Catalano, J. 和 Cohen, P. 84 “失败模型” Klusch, M. 和 Gerber, A. “动态联盟形成问题” 91