1。今天在印度生产的电池电力高清电视可提供当前车辆技术的最大温室气体排放量,但是通过在印度电网中煤炭的更快播放速度可以大大提高其影响。在各个车辆类别中,我们估计,2023年在印度生产的BEV HDV的生命周期温室气体排放量比柴油ICE HDV对应物低约17%–29%,而在其生命周期内被网格平均电力加油。但是,当用专用的可再生电力供电时,它们的排放量降低了78%–83%。印度BEV限制潜在的温室气体减少的主要因素是印度电网混合物中煤炭相对较大的份额(2021年约70%)。更大的可再生能源部署以及减少的传输和分配损失可以有意义地改善已经在路上的BEV的排放。
本研究对中国、欧洲、印度和美国的乘用车温室气体排放进行了生命周期评估 (LCA)。这四个市场占全球新乘用车销量的绝大部分,反映了全球汽车市场的大部分变化。该研究考虑了最相关的动力系统类型——内燃机汽车 (ICEV),包括混合动力汽车 (HEV)、插电式混合动力汽车 (PHEV)、电池电动汽车 (BEV) 和燃料电池电动汽车 (FCEV),以及各种燃料类型和动力源,包括汽油、柴油、天然气、生物燃料、电子燃料、氢气和电力。对于每个地区,分析都基于最具代表性的细分市场的平均车辆特性,并考虑了实际驾驶条件下的燃料和电力消耗。此外,根据既定政策,该研究估计了预计在 2030 年注册的汽车的生命周期温室气体排放量与今天注册的汽车相比如何。对于 2021 年和 2030 年的汽车,它考虑了车辆使用寿命期间燃料和电力组合的变化。
她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK她效应大学,她的官员,S1 3JD,英国B b曼彻斯特大学化学工程系,曼彻斯特大学,曼彻斯特大学,M13 9PL,英国C英国C型催化枢纽,Harwell,Harwell,Harwell,Harwell,Rutherford Appleton,Rutherford Appleton,Harwell,Harwell,Harwell,Harwell,Ox11 0fa,UK demang dement,UK D Inturand of nucement of nordy n forne Elettra-Sincrotrone Trieste, Strada Statale 14, 34149, Basovizza, Trieste, Italy f Department of Materials Science and Engineering, University of Sheffield, Sheffield, S1 3JD, UK g Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK h The University of Manchester at Harwell, Diamond Light Source, Harwell Science and Innovation校园,DIDCOT OX11 0DE,UK
为了补偿CO 2捕获的高成本,本研究提出了一种新的解决方案,该解决方案将压缩的CO 2储能(CCES)系统集成到具有CO 2 Capture(Oxy_CCES)的氧气燃烧燃烧机中。能量存储的整合有可能从电价变化中产生套利。所提出的OXY_CCES系统可以达到34.1%的净效率,并且比液体的氧气储存氧气储存的氧气燃烧燃烧植物(Oxy_O 2)高34.1%,并且更高的发弹性效率为57.5%。建立了两种情况,即,建立了现有的氧气燃烧植物(S E I)和建造新工厂(S-II),以比较Oxy_CCES和OXY_O 2。在S E I中,OXY_CCE的回报时间为一年,在S-II中,OXY_CCE的电位电量成本(LCOE)增加了1.8%,低于OXY_O 2的电力。灵敏度分析表明,当峰值和谷电价格之间的差异以及能源存储系统的能力增加50%时,OXY_CCES系统的净现值(NPV)和LCOE分别增加了113.4%和1.7%,这会降低到NPV和LCOE的增加,而NPV和LCOE则增加了OXY_O_O的NPV和LCOE。©2022 Elsevier Ltd.
本文提出了使用硝酸铵(HAN)推进剂进行航天施用的燃烧室的初步研究。燃烧室由两个部分组成,即推力室和收敛性(C-D)喷嘴。燃烧室的设计非常重要,因为在此封闭体积中释放的推进剂中的化学能,即推力室并通过C-D喷嘴部分扩展。因此,必须设计腔室,以提供推进剂反应和释放最大可用能量的必要空间,并且还应防止以热的形式损失能量。应最佳设计C-D喷嘴,以允许将焓的最大转化为动能。因此,推力室和C-D喷嘴以最佳尺寸设计,用于释放热量,以将HAN推进剂的燃烧转换为基于HAN的单核粉推进器的排气速度。在这项工作中,燃烧室,即推力室和C-D喷嘴在16 bar的压力下设计,以产生11 N的推力。进行了11 N分析以显示以11 N推力的燃烧室的压力和温度变化,用于航天器的16 bar的16 bar压力和腔室压力。从分析结果中发现,han+甲醇+硝酸铵+水的推进剂组合的单opellogent发动机适合于态度和轨道控制系统(AOCS)推进器的设计。
2 文献综述.................... ... 6 2.1.1 二冲程发动机 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................11 2.2 控制理论..........................................................................................................................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................11 2.2.2 控制理论.......................................................................................................................................................................................................................................11 2.2.1 PID 控制算法.......................................................................................................................................................................................................................................................11 .. ... . ... ...
注意:本报告是作为美国政府机构赞助的工作的说明而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
在巴西电基质(2022年为8%)和全球(2021年的61.5%)中存在热电厂。燃烧发动机用于在大多数热电厂中驱动发电机,作为大气发射的主要来源。本研究旨在提出一个模型,允许预先选择这些发动机,并确定最适合获得环境许可的建议标准的模型。使用十二个发动机模型的数据用于评估研究的替代方案。通过R计划利用了计算资源来对数据进行统计分析。与屏幕视图软件的模拟可以调查大气分散场景。研究表明,分散与以下变量具有显着相关性:发射速率,显着性为0.60,烟囱高度为-0.57。It was possible to con- clude that for wind speeds equal to or greater than the local annual average of 2.1 m/s, a distance of 1800 meters to the community (location of the thermal power plant), a flue gas exit speed of 35 m/s, and the analyzed engine standards and design, engines with a NOx emission rate of up to 3.0 g/kWh showed good dispersion values, below 200 mg/Nm 3 of NOx, the standard required by巴西环境立法。因此,只有四个引擎模型符合此条件。
非蒸发的液体燃料膜是汽油直接注入发动机烟灰形成的主要原因。在这项研究中,开发了一种UV-VIS吸收技术,以在加热的恒流实验中直接注射后的燃料膜厚度成像。一个六孔GDI喷油器将燃料在100栏上喷涂到距喷嘴30毫米的透明板上。燃料由30%甲苯 / 70%的Iso-octane(分别为383和372 K)组成。气体和壁温度分别为376和352 K,气压1 bar。燃料的蒸发部分被点燃,随后的燃烧膜旁边的燃烧导致了烟灰的形成。在加剧的高速CMOS摄像头上成像了从脉冲LED照明中传输散射的背光。液态甲苯的紫外线吸光度为265 nm的LED。然而,在这种波长下,甲苯蒸气吸收,液体散射,烟灰和烟灰前体的灭绝以及烟灰白幕都干扰了液体燃料的吸光度。为了估计散射和烟灰消光的贡献,将310、365和520 nm处的LED添加到梁路径中,并以32 kHz的帧速率在高速摄像头上与连续的帧相吻合。获得了一个深色框架以说明烟灰阴影,以使所得5图像序列的重复速率为6.4 kHz。通过在先前的工作中开发的形态图像处理估算了甲苯蒸气的吸收,以将弥漫性的,移动的蒸气云与燃料膜的锋利,固定特征分开。允许获得时空分辨的燃油膜厚度测量和有关烟灰的其他信息的多光谱方法。