图 1. 在表达 GFP 标记的野生型或变体 AR 的 M12 同源 PC 细胞系中追踪 EB1 彗星。MT 尖端和 AR 用 GFP 标记并成像一分钟(采集率为每秒两张图像)。EB1 彗星通过计算跟踪(Yang 等人,2005 年)。颜色编码代表 EB1 速度,较冷的颜色对应较低的速度,较暖的颜色对应较快的速度。比例尺等于 5 µm。(A)表达野生型 AR 变体的 PC 细胞的 MT 生长轨迹。中位速度约为 15 µm,边缘处明显减速,没有 AR。(B)表达对紫杉醇治疗有抗性的 ARv7 变体的细胞的 MT 生长轨迹。中位速度约为 24 um/min。下图显示相应的 EB1 彗星速度直方图。生长速度直方图(单位:µm/min)见(C)AR野生型和(D)ARv7变体。我们根据(Goldstein et al., 2011)分离前列腺组织(图2)并培养类器官
图1。在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。 mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。 EB1彗星是计算跟踪的(Yang等,2005)。 颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。 比例尺等于5 µm。 (a)表达野生型AR变体的PC细胞的MT生长轨迹。 中位速度约为15 µm,边缘有明显的放缓,那里没有AR。 (b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。 中位速度约为24 um/min。 下面板显示相应的EB1彗星速度直方图。 在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。 我们解散了前列腺组织(图 2)根据(Goldstein等,2011)和培养的类器官在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。EB1彗星是计算跟踪的(Yang等,2005)。颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。比例尺等于5 µm。(a)表达野生型AR变体的PC细胞的MT生长轨迹。中位速度约为15 µm,边缘有明显的放缓,那里没有AR。(b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。中位速度约为24 um/min。下面板显示相应的EB1彗星速度直方图。在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。我们解散了前列腺组织(图2)根据(Goldstein等,2011)和培养的类器官
图 1. 在表达 GFP 标记的野生型或变体 AR 的 M12 同源 PC 细胞系中追踪 EB1 彗星。MT 尖端和 AR 用 GFP 标记并成像一分钟(采集率为每秒两张图像)。EB1 彗星通过计算跟踪(Yang 等人,2005 年)。颜色编码代表 EB1 速度,较冷的颜色对应较低的速度,较暖的颜色对应较快的速度。比例尺等于 5 µm。(A)表达野生型 AR 变体的 PC 细胞的 MT 生长轨迹。中位速度约为 15 µm,边缘处明显减速,没有 AR。(B)表达对紫杉醇治疗有抗性的 ARv7 变体的细胞的 MT 生长轨迹。中位速度约为 24 um/min。下图显示相应的 EB1 彗星速度直方图。生长速度直方图(单位:µm/min)见(C)AR野生型和(D)ARv7变体。我们根据(Goldstein et al., 2011)分离前列腺组织(图2)并培养类器官
图1。在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。 mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。 EB1彗星是计算跟踪的(Yang等,2005)。 颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。 比例尺等于5 µm。 (a)表达野生型AR变体的PC细胞的MT生长轨迹。 中位速度约为15 µm,边缘有明显的放缓,那里没有AR。 (b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。 中位速度约为24 um/min。 下面板显示相应的EB1彗星速度直方图。 在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。 我们解散了前列腺组织(图 2)根据(Goldstein等,2011)和培养的类器官在M12中跟踪EB1彗星的等源性PC细胞系,表达GFP标记的WT-或变体-AR。mt Tips和AR用GFP标记并成像一分钟(每秒的采集率为两个图像)。EB1彗星是计算跟踪的(Yang等,2005)。颜色编码代表EB1速度和较冷的颜色对应于较低的速度,较温暖的颜色对应于更快的速度。比例尺等于5 µm。(a)表达野生型AR变体的PC细胞的MT生长轨迹。中位速度约为15 µm,边缘有明显的放缓,那里没有AR。(b)表达对紫杉醇治疗具有抗性的ARV7变体细胞的MT生长轨迹。中位速度约为24 um/min。下面板显示相应的EB1彗星速度直方图。在AR野生型中显示了µm/min的生长速度的直方图和ARV7变体的(d)。我们解散了前列腺组织(图2)根据(Goldstein等,2011)和培养的类器官
地下扩孔作业期间天井钻孔机的灾难性故障 A. James ...................................................................................................................................................... 175 德哈维兰彗星 I PA Withey 的疲劳失效 ...................................................................................................................................................... 185 钛 6A1-4V 手术工具的低周疲劳 H. Velasquez、M. Smith、J. Foyos、F. Fisher。 OS Es-Said 和 G. Sines ........................................................................... 193 螺纹旋转轴的失效分析和实验应力分析 RB Tait ............................................................................................................................................................. 199 低压蒸汽轮机叶片失效调查 NK Mukhopadhyay、S. Ghosh Chowdhury、G. Das、I Chattoraj、SK Das 和 DK Bhattacharya ............................................................................................................. 211 脉冲管线的振动疲劳失效 KR Al-Asmi 和 AC Seibi ............................................................................................................................. 225 蒸汽轮机机械控制系统的故障 JH Bulloch 和 AG Callagy ............................................................................................................................. 235 液压缸压盖固定螺栓的疲劳失效 C. Tao、N. Xi、H. Yan 和 Y. Zhang ............................................................................................................. 241 车辆轮轴失效分析 J. Vogwell ........................................................................................................................................... 247 腿部推举机的疲劳失效分析 PJVernon 和 TJ Mackin ...................................................................................................................................... 255 航空发动机橡胶燃油管失效分析 G. Fu ............................................................................................................................................................. 267
地下扩孔作业期间天井钻机发生灾难性故障 A. James ................................................................................................................................................. 175 德哈维兰彗星 I P.A. 的疲劳失效Withey ............................................................................................................................................. 185 钛 6A1-4V 手术工具的低周疲劳 H. Velasquez、M. Smith、J. Foyos、F. Fisher。O.S.Es-Said 和 G. Sines ........................................... 193 螺纹旋转轴的故障分析和实验应力分析 R.B.Tait ................................................................................................................................................. 199 低压蒸汽涡轮叶片故障调查 N.K.Mukhopadhyay, S. Ghosh Chowdhury, G. Das, I Chattoraj, S.K.Das 和 D.K.Bhattacharya ................................................................................................................................ 211 脉冲管线的振动引起的疲劳失效 K.R.Al-Asmi 和 A.C. Seibi .................................................................................................................. 225 蒸汽涡轮机机械控制系统故障 J.H.Bulloch 和 A.G. Callagy ...................................................................................................................... 235 液压缸压盖固定螺栓疲劳失效 C. Tao, N. Xi, H. Yan 和 Y. Zhang ...................................................................................................................... 241 车辆轮轴失效分析 J. Vogwell ............................................................................................................................................. 247 腿部推举机疲劳失效分析 P.J.Vernon 和 T.J Mackin ............................................................................................................................. 255 航空发动机橡胶燃油管失效分析 G. Fu ............................................................................................................................................. 267
Page 上午和下午的提问时间 vii 英国皇家空军博物馆演讲厅 3 中队长凯莱特的韦尔斯利 51 1994 年改装前的白羊座 I 86 为极地飞行而改装的白羊座 I 86 白羊座 I 机组人员,1945 年 5 月 87 白羊座 I 飞行的航线 87 白羊座 II,林肯 RE364 88 白羊座 III 机组人员,1951 年 8 月 88 1951 年白羊座 III 的极地冰层 89 1955 年 6 月的白羊座 IV 和 V 89 承办白羊座飞行的不列颠尼亚 90 彗星 4C“老人星” 90 20 世纪 90 年代中期的白羊座最新场景 91 1984 年在肖伯里举行的白羊座演示 91 英国宇航“活动驾驶舱” 122 空军元帅约翰·柯蒂斯爵士 136 大卫·佩奇先生 136 飞行中尉亚历克Ayliffe 137 中校 C G Jefford 138 中队长 Philip Saxon 138 上校 David Broughton 139 空军副元帅 Jack Furner 140 空军准将 Norman Bonnor 141 空军准将 Bill Tyack 141 上校 F C ‘Dickie’ Richardson 144 毕业游行,1954 年 6 月 152
最近的2019年冠状病毒病(COVID-19)大流行是由严重的急性呼吸综合症冠状病毒2(SARS-COV-2)引起的。covid-19的特征是呼吸窘迫,多器官功能障碍,在某些情况下是死亡。该病毒还负责COVID后19条病毒(通常称为“长卷”)。SARS-COV-2是一种单链的阳性RNA病毒,基因组约为30 kb,编码26个蛋白质。据报道,它会影响感染细胞中的模拟途径,在许多情况下,导致诱导“细胞因子风暴”和细胞衰老。也许是因为它是一种RNA病毒,主要在细胞质中复制,因此SARS-COV-2对基因组稳定性和DNA损伤反应(DDRS)的影响几乎没有得到关注。然而,现在已经很清楚的是,该病毒会损害细胞DNA,如微核,DNA修复灶和受感染细胞中彗星尾巴增加所示。本综述考虑了最近的证据,表明SARS-COV-2如何导致基因组不稳定性,消除细胞周期并靶向DDR途径的特定组成部分。还考虑了病毒引起细胞衰老能力的重要性,基因组不稳定性对患有长期共同的患者的影响也是如此。
分子对遗传毒性应激的反应,例如电离辐射,复杂复杂,涉及数百个基因。靶向内源基因是否可以增强对电离辐射的阻力仍有待探索。在本研究中,我们利用CRISPR/DCAS9技术的优势中度过表达RPA1基因,该基因编码了复制蛋白A(RPA)的关键功能亚基。RPA是一种高度保守的异三个单链DNA结合蛋白复合物,参与了DNA复制,重组和修复。RPA1的功能障碍对细胞和生物有害,并且可能导致对许多应激因素的抗药性降低。我们证明,过表达RPA1的HEK293T细胞通过伽马辐射对细胞杀死的抗性增强。使用碱彗星测定法,我们显示出在RPA1过表达细胞中γ辐照后,DNA断裂的显着加速。然而,在RPA1过表达的情况下,DNA损伤的自发速率也更高,这表明由于RPA蛋白的活性升高而导致复制误差的处理改变。此外,对具有不同水平DNA损伤的细胞分布的分析显示了RPA1过表达与DNA修复动力学之间的联系,在差异损坏的细胞亚群中。我们的结果提供了有关DNA损伤应力反应的知识知识,并表明通过靶向改变单个基因表达来增强放射线的概念是可行的,但是应考虑和评估不希望的后果。
摘要:本研究旨在分析药物抑制 DNA 损伤反应 (DDR) 靶点 (DNA-PK 和 ATR) 对不同分子/组织学亚型膀胱癌细胞系放射增敏的影响。将 DNA-PK (AZD7648) 和 ATR (Ceralasertib) 抑制剂应用于 SCaBER、J82 和 VMCUB-1 膀胱癌细胞系,我们发现了电离辐射 (IR) 的致敏作用,即随着 IR 剂量的增加,每种药物的 IC 50 都会转移到较低的药物浓度。与此一致,药物暴露会延缓 IR 诱导的 DNA 损伤后的 DNA 修复,这可通过中性彗星试验观察到。Western blot 分析证实了所分析的膀胱癌细胞系中靶向 DDR 通路的特异性抑制,即药物阻断了 Ser2056 位点的 DNA-PK 磷酸化和 Ser317 位点的 ATR 下游介质 CHK1。有趣的是,克隆形成存活试验表明,DDR 抑制与 IR 联合具有细胞系依赖性协同作用。根据 Chou-Talalay 方法计算有和没有 IR 的联合指数 (CI) 值,证实了药物和 IR 剂量特异性协同 CI 值。因此,我们提供了功能性证据,表明 DNA-PK 和 ATR 抑制剂专门针对相应的 DDR 通路,在纳摩尔浓度下延缓 DNA 修复过程。这反过来又会导致强烈的放射增敏作用并损害膀胱癌细胞的存活率。