在量子计算机上模拟汉密尔顿动力学是量子信息处理的核心。在本次演讲中,我将讨论交换和反交换在汉密尔顿模拟中的作用。在 Trotter 算法中,最坏情况的算法误差与汉密尔顿加数的嵌套交换子的谱范数有关。我们最近的工作 [PRL 129.270502] 表明,汉密尔顿模拟的平均性能与嵌套交换子的 Frobenius 范数有关。为了处理交换子中的 Trotter 误差,我们提出了使用 LCU 补偿 Trotter 误差的汉密尔顿模拟算法,该算法兼具两者的优点 [arXiv: 2212.04566]。反交换一直被视为一种障碍,它使模拟变得更加困难,并且需要额外的资源才能达到所需的模拟精度。在我们最近的工作 [Quantum 5, 534 (2021)] 中,我们发现反向交换可以在 LCU 类型的汉密尔顿模拟算法中提供优势。基于反向交换取消,我们减少了算法误差并提出了改进的截断泰勒级数算法。
国防部 (MOD) 致力于保护您的个人数据的隐私和安全,国防部隐私声明解释了您的权利并提供了您根据英国数据保护法规有权获得的信息。请务必阅读本声明以及我们在收集或处理您的个人信息时可能提供的任何其他隐私声明,以便您了解我们如何以及为何使用此类信息。国防部个人信息宪章包含当我们要求、持有或共享您的个人信息时您可以期待的标准以及您在法律下的权利。
电流型整流器需附加重叠时间,重叠时间会产生重叠电流,造成输入电流畸变。本研究通过对比增加重叠时间前后交流侧电流来说明重叠时间的影响。讨论了三角载波、正向载波、负向载波等不同调制载波下重叠时间引起的重叠电流分布。基于傅里叶分析,建立了交流侧电流多余谐波与重叠时间的定量关系。在换向分析的基础上,提出了一种能抑制重叠电流的新型载波调制方案。搭建了一台3 kW样机,验证了重叠时间影响及所提抑制调制方案的有效性。